- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
알파고 2.0 ??
1. 경향신문 기사 中
작년 3월 이세돌 대국 당시 알파고는 구글이 개발한 AI용 칩인 ‘TPU’ 50개를 동원하는 등 대규모 전산 설비를 썼지만, 올해에는 TPU 4개를 얹은 산업용 컴퓨터(machine) 1대만 썼다.
원문보기:
http://news.khan.co.kr/kh_news/khan_art_view.html?artid=201705251847001&code=970204&nv=stand&utm_source=naver&utm_medium=newsstand&utm_campaign=row1_4#csidx014b2a168e8fece83d99057dbfba69d
2. 블로터 기사 中
이세돌 9단과 대국한 알파고는 구글 클라우드 상 50개의 TPU(Tensor Processing Unit)를 사용했다. TPU는 구글이 머신러닝을 위해 특별히 제작한 처리장치다. 1초에 50개의 수와 10만개의 형태를 탐색할 수 있었다. 현재 커제 9단과 대국 중인 알파고는 ‘알파고 마스터’라고 불리는 버전이다. 이번 구글 I/O 에서 공개된 단일 TPU 머신을 사용하며 2016년 버전 대비 10분의 1의 컴퓨팅 파워를 사용하면서도 더 빨리 계산한다.
http://www.bloter.net/archives/280664
3. NEXTPLATFORM - TPU2에 대한 기사 中
Google’s first generation TPU consumed 40 watts at load while performing 16-bit integer matrix multiplies at a rate of 23 TOPS. Google doubled that operational speed to 45 TFLOPS for TPU2 while increasing the computational complexity by upgrading to 16-bit floating point operations. A rough rule of thumb says that is at least two doublings of power consumption – TPU2 must consume at least 160 watts if it does nothing else other than double the speed and move to FP16. The heat sink size hints at much higher power consumption, somewhere above 200 watts.
https://www.nextplatform.com/2017/05/22/hood-googles-tpu2-machine-learning-clusters/
댓글13
-
세상의모든계산기
In-Datacenter Performance Analysis of a Tensor Processing Unit ™
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view
※ 이 논문은 TPU2 가 아닌 TPU(1세대) 을 대상으로 작성된 논문입니다.
-
세상의모든계산기
NVIDIA V100
출처 : https://devblogs.nvidia.com/parallelforall/inside-volta/?ncid=so-fac-vt-13920
Tesla V100 delivers industry-leading floating-point and integer performance. Peak computation rates (based on GPU Boost clock rate) are:
7.5 TFLOP/s of double precision floating-point (FP64) performance;
15 TFLOP/s of single precision (FP32) performance;
120 Tensor TFLOP/s of mixed-precision matrix-multiply-and-accumulate.
-
세상의모든계산기
팩트 정리를 해 보면...
1. 돌파고의 TPU는 TPU1 으로 불림2. 커파고의 TPU는 TPU2 로 불림
(칩을 TPU2 Chip 으로 부르기도 하는 듯)3. TPU2 모듈 1개는 TPU2코어 4개로 구성
4. TPU2 모듈의 성능 = 45테라플롭스/개*4개 = 180테라플롭스 (
5. https://www.tensorflow.org/tfrc/ 구글 텐서 크라우드?는 100개의 TPU2 모듈로 구성
각각의 TPU2 칩은 두개의 BlueLink 25GB/s 케이블로 연결 -
세상의모든계산기
추정
CPU 종류와 그 비율
출처 : https://www.nextplatform.com/2017/05/22/hood-googles-tpu2-machine-learning-clusters/
We believe that Google connected each CPU board to exactly one TPU2 board using both OPA cables to achieve 25 GB/s aggregate bandwidth. This one-to-one connectivity answers a key question for TPU2 – Google designed the TPU2 stamp with a 2:1 ratio of TPU2 chips to Xeon sockets. That is, four TPU2 chips for every dual-socket Xeon server.> 클라우드가 아닌 싱글머쉰에서 알파고가 돌아갔다면 제온 2소켓 보드 + TPU2 모듈*1개 구성이 맞는 듯
> CPU는 구글 문서에 나온대로 INTEL XEON E5-2699v3 인것 같음. 실질적 계산 역할은 그리 크지 않은 듯.
(seldom 하게 2.3GHz 이외 클럭으로 동작)> 전력소모는 구글 문서에 나온대로 TDP 861W, IDLE 290W, BUSY 384W (싱글머쉰 기준) 이 맞는 듯


세상의모든계산기 님의 최근 댓글
fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24 HP Prime 에서 <Home> 73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치 <CAS> 21자리까지 나와서 이상하다 싶었는데, Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가? (전) 73.0495070584718691243 (21-digits ????) (후) 73.0495070584718500814401 (24-digits ????) 찾아보니 버그는 아니고, CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함. Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen). 출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657 일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임. 2025 10.23 khiCAS 에서 HP 39gII 에 올린 khiCAS는 254! 까지 계산 가능, 255! 부터는 ∞ fx-9750GIII 에 올린 khiCAS는 factorial(533) => 425760136423128437▷ // 정답, 10진수 1224자리 factorial(534) => Object too large 2025 10.23