- 세상의 모든 계산기 자유(질문) 게시판 퀴즈 ()
베스킨라빈스 게임 확장판? "Say 51 to Win" 필승 공략법?
승리조건 : 2명이서 번갈아가며 자연수 1부터 오름차순으로 말하는데, 51을 말한 사람이 승리함.
추가조건
- 연속으로 말할 수 있는 숫자는 최대 5개까지이고, 숫자를 말하지 않고 Pass 할 수는 없음.
- 처음말하는 사람은 1개~5개 중에서 원하는만큼 연속으로 말할 수 있음.
- 이후로 말하는 사람은 앞 사람이 말한 숫자의 갯수(n)±1 범주에서 연속하여 말해야 함.
예) 1개→1개~2개 // 3개→2개~4개 // 5개→4개~5개 - 각각 1번의 찬스가 있고, 찬스를 쓰면 앞사람이 말한 숫자의 갯수와 무관하게 숫자를 말할 수 있음.
단, 1의 제약조건(1개~5개 사이에서 연속할 것)은 유효하다.
원문 : http://kin.naver.com/qna/detail.nhn?d1id=11&dirId=1113&docId=238413219
└ 원문을 기반으로 내용을 약간 수정/추가하였습니다.
댓글4
-
세상의모든계산기
승리 조건표입니다.
* 둘 다 찬스를 미리 사용하지 않고 45까지 진행함을 가정합니다.
└ 찬스를 사용한 것을 가정하면 표가 완전 달라집니다. 찬스와 무관하게 먼저 시작하는 사람에게 필승기회가 있습니다.
└ 찬스는 마지막 46~50 구간 진입시에 사용하여 승리하는 것으로 가정합니다.
* 승리의 예시로 빨간 줄과 파란 줄을 표시해 두었습니다.
(빨간줄은 중간에 그만 두었는데, 계속 이어가보시면 표를 이해하기 쉬우실 겁니다)
1. 처음 숫자를 선택하는 사람은 {1첫번째칸} {1,2두번째칸} {1,2,3세번째칸} {1,2,3,4네번째칸} {1,2,3,4,5다섯번째칸} 중 하나를 선택하여야 합니다. 따라서 index 1~4 줄에 오른쪽 검은 사선은 첫번째 숫자를 부르는 사람이 선택할 수 없는 조건입니다.
2. 각 칸에 쓰여 있는 true 는 승리조건입니다. 마지막 숫자 & 연속으로 말한 숫자의 갯수 를 둘 다 만족하여야 합니다. 첫번째 말하는 사람은 {index=1, 연속=1} {2,2} {3,3} {4,4} {5,5} 중에서 하나를 선택해야 하는데, 그 중에서 true 인 것은 {1,1} 뿐입니다. 따라서 무조건 1을 말하는 수밖에 없습니다.
3. 숫자6, 24, 45는 필승 Number로서 마지막 숫자로 말한 사람은 승리 조건을 만족합니다.
-
세상의모든계산기
[승리 조건 표 - 찬스 남았을 때 & 찬스 없을 때]를 구글 스프레드시트로 정리하였습니다.
아래 링크에서 확인 가능합니다.https://docs.google.com/spreadsheets/d/18HrbMkqrE6lSffc-3AdVsJegjaJscRJRjRkHP3aMiIU/edit?usp=sharing
세상의모든계산기 님의 최근 댓글
fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24 HP Prime 에서 <Home> 73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치 <CAS> 21자리까지 나와서 이상하다 싶었는데, Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가? (전) 73.0495070584718691243 (21-digits ????) (후) 73.0495070584718500814401 (24-digits ????) 찾아보니 버그는 아니고, CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함. Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen). 출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657 일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임. 2025 10.23 khiCAS 에서 HP 39gII 에 올린 khiCAS는 254! 까지 계산 가능, 255! 부터는 ∞ fx-9750GIII 에 올린 khiCAS는 factorial(533) => 425760136423128437▷ // 정답, 10진수 1224자리 factorial(534) => Object too large 2025 10.23