- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
유효숫자 Significant figures
1. 정의
- 정확도에 영향을 주는 숫자 : Wikipedia(KO)
- 오차를 고려한다 해도 신뢰할 수 있는 숫자를 자릿수로 나타낸 것 : 두산 백과
- The significant figures of a number are those digits that carry meaning contributing to its precision : WIkipddia (EN)
- Each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first non-zero digit. : Oxford Dic
2. 특징
- 유효숫자의 갯수는 소숫점 위치와는 무관
- 자릿수만을 표현하기 위한 0은 유효숫자가 아니다. 0.000123 에서 1 앞의 0들
- 유효숫자 사이의 숫자는 유효숫자이다. (유효숫자는 연속으로 존재한다) 102 에서 1과 2가 유효숫자라면 0도 유효숫자
- 과학적 상수는 유효숫자가 무한대
- 수학은 오차 없는 정확한 숫자를 다루기 때문에 유효숫자 문제가 발생하지 않으나,
과학은 실험에 의한 오차가 항상 발생하기 때문에 유효숫자를 잘 파악해야 한다.
3. 구분
|
숫자 |
유효숫자의 갯수 |
비고 |
|
0.000123 |
1,2,3 |
앞의 0 무리는 자릿수를 표현하기 위한 것일 뿐 |
|
1.234 |
1,2,3,4 |
|
|
2.0 |
2,0 |
|
|
0.0 |
없음 |
모든 자리가 0 |
|
1.200E(-10) |
1,2,0,0 |
|
|
4×10² |
4 |
? |
|
내 손바닥 위의 사탕 1개 |
무한대 |
오차 없이 정확한 측정이 가능한 셈의 결과 |
|
무한대 |
과학적 상수 |
|
|
1980 (1의 자리 반올림) |
1,9,8 |
|
|
1980 (소숫점 첫째자리에서 반올림) |
1,9,8,0 |
|
4. 연산
- 덧셈, 뺄셈
소숫점 이하 자릿수가 짧은 것에 기준한다.
ex) 101.10 (소수이하2)+ 1.234 (소수이하3) + 3.109910 (소수이하6)
105.44 (소수이하2)
- 곱셈, 나눗셈
유효숫자의 갯수가 적은 것에 기준한다.
ex) 101.10 (유효5)× 1.234 (유효4)
124.7 (유효4)
1.2 kW (유효2) × 2 (유효무한대)
2.4 kW(유효2)
- 셋 이상의 숫자 연산시 유효 숫자 처리는 중간에 혹은 마지막에?
매 계산마다 유효숫자 처리를 하는 것이 원칙.
단, 중간 유효숫자 갯수보다 한자리 많게 계산함.(근거는 모르겠음. 곱하기에서만 한자리 많게 하는 건가?)
ex) 4.18 - 56.17 ⅹ (3.382 - 3.01)
= 4.18 - 56.17 ⅹ 0.37 ⇐ 뺄셈방법에 따라 소수점 이하 2자리로 맞춤.
= 4.18 - 20.(8) ⇐ 반올림하여 한자리를 추가한 후 유효숫자 2자리로 맞춤.
= -17 ⇐ 소수점 첫째 자리에서 반올림하여 소수점 이하 0자리로 맞춤. (4.18 - 20 = -15.82)
- 반올림? 버림?
댓글5
- 1
-
세상의모든계산기
연산 예제의 계산 (feat. TI nspire Tool - Significant Figures Calculator )




나름 계산해 과정까지 보여주긴 합니다만,
교제에서 나온 것과 결과가 다를 수 있습니다. 주의하세요.
세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28