(복잡한 다항식 수식에서) 계산기 내부 유효 자릿수에 따른 approx() 오차
TI-nspire 기종에 대한 solve 질문글에 대해 답변을 하던 중 이상한 점을 발견하였습니다.
평소에는
방정식의 해를 numeric 한 방식으로 solve 를 이용해 찾는 것보다,
vs
(소숫점을 없애서) exact 방식으로 참 값을 먼저 구하고 → 그 값에 대한 근사값 approx(참 값)
을 구하는 것이 더 정확했습니다.
그런데 이번에는 반대로 오차가 커지는 겁니다. 이 궁금증을 해결하기 위해 직접 분석을 진행해 보았습니다.

1. 분석 대상 수식
분석에 사용된 수식은 다음과 같습니다. cos, sin의 단위는 모두 degree입니다.
$$ \dfrac{120 \left( 150000 \left( \cos\left(\dfrac{7001}{5000}\right) \sqrt{2} - 2 \sin\left(\dfrac{217999}{5000}\right) \right) \cos\left(\dfrac{217999}{5000}\right) - 136342 \sin\left(\dfrac{217999}{5000}\right) \cos\left(\dfrac{7001}{5000}\right) - \left( 150000 \sin\left(\dfrac{7001}{5000}\right) \sin\left(\dfrac{217999}{5000}\right) - 68171 \right) \sqrt{2} \right)}{\sin\left(\dfrac{7001}{5000}\right) \left( 150000 \cos\left(\dfrac{7001}{5000}\right) \cos\left(\dfrac{217999}{5000}\right) - 150000 \sin\left(\dfrac{7001}{5000}\right) \sin\left(\dfrac{217999}{5000}\right) + 68171 \right)} $$
((120*(150000*(cos(((7001)/(5000)))*√(2)-2*sin(((217999)/(5000))))*cos(((217999)/(5000)))-136342*sin(((217999)/(5000)))*cos(((7001)/(5000)))-(150000*sin(((7001)/(5000)))*sin(((217999)/(5000)))-68171)*√(2)))/(sin(((7001)/(5000)))*(150000*cos(((7001)/(5000)))*cos(((217999)/(5000)))-150000*sin(((7001)/(5000)))*sin(((217999)/(5000)))+68171)))
2. 가장 정확한 기준값은? (고정밀도 계산)
오차를 측정하려면 가장 정확한 '참값'이 필요합니다. 일반적인 PC 계산 환경(64비트 float)의 한계를 넘어서기 위해, 파이썬의 mpmath 라이브러리를 사용하여 100자리의 정밀도로 기준값을 계산했습니다.
73.04950705847862934420128091048894148771096960598761210206551516481655390211661403804814403351531886
3. 최종 정밀도 분석표
위 100자리 고정밀도 기준값을 바탕으로, 각기 다른 십진수 유효자릿수를 가진 가상의 계산기를 시뮬레이션하여, 오차를 측정한 결과입니다.
- 계산 결과: 73.04950705847811
- 실제 오차: 5.16135835013993051626500528352e-13
4. 왜 이런 오차가 발생할까?
컴퓨터의 숫자 저장 방식: 2진법의 한계
가장 근본적인 원인은 컴퓨터가 숫자를 2진법으로 저장하는 데 있습니다. 우리가 사용하는 10진수 소수 중 상당수는 2진수로 변환하면 무한소수가 되어, 정해진 비트(bit) 안에 완벽하게 담지 못하고 근사치로 저장됩니다. 이 작은 근사 오차가 계산 과정에서 계속 누적되어 최종 결과에 영향을 미칩니다.
누적 오차의 예시
(1 / 3) * 3 을 유효자릿수 4자리 계산기로 계산하는 상황을 가정해 봅시다.
1 / 3계산: 결과는0.333333...이지만, 4자리만 저장할 수 있으므로0.3333으로 반올림됩니다. (첫 오차 발생)0.3333 * 3계산: 결과는0.9999가 됩니다. 참값인1.0과 미세한 차이가 생깁니다.
복잡한 수식은 이런 과정이 수십, 수백 번 반복되는 것과 같으므로 작은 오차들이 모여 눈에 띄는 차이를 만들게 됩니다.
문제가 된 처음의 수식 역시 계산기 입장에서 아래와 같은 수많은 연산을 거치며 오차가 누적 및 증폭되어 최종적으로 solve의 정상 범주를 벗어난 x값이 구해진 것이라고 분석할 수 있겠습니다.
- 나눗셈 (Division): 12회
- 사인 (sin): 7회
- 코사인 (cos): 5회
- 루트 (√): 2회
- 곱셈 (Multiplication): 15회
- 뺄셈 (Subtraction): 5회
- 덧셈 (Addition): 1회
결론
일반적인 공학용 계산기(보통 10~14자리)의 정밀도는 대부분의 상황에서 충분히 신뢰할 만합니다. 하지만 이번 분석처럼 매우 복잡한 연산을 하거나, 과학/금융 분야에서 극도의 정밀도를 요구할 때는 표준 계산 환경의 한계를 인지하는 것이 중요합니다.
이러한 한계를 극복하기 위해 파이썬의 mpmath와 같은 임의 정밀도 산술 라이브러리가 존재하며, 이를 통해 우리는 하드웨어의 제약을 넘어 원하는 만큼 정밀한 값을 얻을 수 있습니다.
부록: 분석에 사용된 전체 Python 코드
이 분석을 직접 재현해보고 싶으신 분들을 위해, 최종 분석에 사용된 전체 코드를 공유합니다. (mpmath 라이브러리 설치가 필요합니다: pip install mpmath)
댓글6
-
세상의모든계산기
카시오 fx-570 ES, EX 로 계산하면?
카시오도 (십진수) 14digits 한계이므로, 비슷한 값이 나올 것으로 예상됨.다만, stack 및 길이 한계로 수식 전체를 그대로 입력할 수는 없음.
A,B,C,D 를 조합해 수식을 완성


결과에서 73.049507 을 빼면
- fx-570 ES가 구한 결과값(Ans)은
73.0495070584404 (15digits) 로 최종 확인됨.
- TI-Nspire (14-digits) 보다 오차가 작음.
- 파이썬 시뮬레이션의 15-digits 결과(73.0495070585241)와 같지는 않음. 원인은 모르겠음.

ㄴ fx-570 EX 결과
-
세상의모든계산기
TI-nspire 에서 동일하게 a,b,c,d로 치환해서 계산

- 결과는 치환 없이 그냥 approx(전체식) 한 결과와 동일.
- 73.049507058547 (14-digits)
- 파이썬 시뮬레이션 14-digits 와 결과값이 같음.
-
세상의모든계산기
fx-9860 및 fx-CG 의 경우
fx-9860GII SD 에서 위의 fx-570 과 같이 A,B,C,D 로 나눠서 계산하면

fx-CG에서 치환할 대상을 약간 바꿔서 분모→A, 분자→B 로 저장해 풀어보아도

- 결과는 둘 다 같음.
- 73.0495070585238 (15 digits)
- fx-570ES와 같은 15-decimal-digits 정밀도인데, 왜 값이 다를까?
- 파이썬 시뮬레이터상 15 digits 값과도 같지 않음.
-
세상의모든계산기
fx-570 CW 로 계산하면?


- 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits)
- 오차 = 6.632809104889414877 × 10^-19
꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음.
- 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐.
-
세상의모든계산기
HP Prime 에서
<Home>

73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치
<CAS>

21자리까지 나와서 이상하다 싶었는데,
Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가?
(전) 73.0495070584718691243 (21-digits ????)
(후) 73.0495070584718500814401 (24-digits ????)
찾아보니 버그는 아니고,
CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함.
Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen).
출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657
일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임.
세상의모든계산기 님의 최근 댓글
ES 나 EX 와 비교해 'CW 입력 방식이 변화가 큰 편'이어서 지금까지 추천하지는 않았는데, - EX 모델이 완전 단종 & 그로 인해 짝퉁문제가 앞으로 더 심각해질 듯 보임 - 그렇다고 지금 ES 추천하기는 강호의 도리상 고개가 저어지고... 이제 모두 CW로 넘어갈 타이밍이 되지 않았나 싶네요. 그런데 왜 또 4자리로 나와서... ㅋㅋ 미치겠네 2025 12.28 버튼 갯수 = 동일 버튼 배치 = 동일 버튼 음각이 없어지고, 마킹. 가독성 선택 태양광 패널 삭제. (그러면 5700CW 라고 해야 맞는 거 아닌가?) 그 외에 메뉴가 살짝 변경된 듯 함. (욕먹던 거 수정한 듯 보이기도) 배터리 1.5V LR44 -> 1.5V AAA https://www.reddit.com/r/calculators/comments/1o7kj7f/casio_fx9910cw_review_a_much_needed_improvement/ 2025 12.28 fx-570 CW 는 정밀도가 올라갔음. 여기까지 매우 정밀한 값 = 1.7887597505251 Math ERROR 는 아니고 Time Out 이 발생함. 아쉽게도... 2025 12.28 에러는 피했지만 오차는 피할 수 없음. 매우 정밀한 값 = 1.7887597505251 fx-570 ES 나 EX 는 여기까지가 한계 더 이상 작은 값이 대입되면 실질적으로 분모가 0으로 처리되어 ERROR (수식마다 한계가 다름) 2025 12.28 진짜 색약 안경은 비싸서 살 생각은 없고, 알리에서 싸구려 구매해서 테스트 해 봤습니다. 프로그램과 비슷한 효과가 있고, (프로그램과 비교해서) 알리 싸구려 렌즈가 - 숫자 구분이 아주 약간 더 잘 되고 - 붉은 색상이 더 밝습니다. 채도가 높다고 해야하는 것 같네요. 주의할 점은 알리 색약 안경은 일상용으로는 절대 사용 불가입니다. - 내부 빛반사 방지 코팅이 없어서 내 눈알이 렌즈에 비치고, 그래서 실제로 보여야 할 것과 섞여 보입니다. - 필터 코팅도 최악이라서 중심부(=마젠타) 주변부(=노랑)으로 서로 다르게 색이 들어옵니다. 전반적으로 그라데이션 발생. - 외부에서 봤을 때 렌즈색이 튀기 때문에, 티가 많이 납니다. - 색 구분 면에서는 도움이 될 수도 있지만, 녹색(특정 파장)이 차단되어 LED 신호등의 녹색이 잘 안보일 수 있습니다. 2025 12.24