- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
알파고 ELO Rating 이 4500??



사진 출처 :
http://test.pgr21.com/pb/pb.php?id=humor&no=269200
http://gall.dcinside.com/board/view/?id=baduk&no=137040&page=5
http://www.lifein19x19.com/forum/viewtopic.php?f=18&t=12922
https://www.zhihu.com/question/41780229
David Silver yesterday gave a lecture at UCL, which refers to the ELO ratings AlphaGo, where chess with Shishi version (v18) actually has up to 4500 points, allowing the arm with Fan chess that paragraph AlphaGo (v13) four sub . ELO rating is the score http://goratings.org on the current world chess Ke Jie was the first person to 3615 points - the points difference Elo rating represents the corresponding winning percentage, 800 points, then the difference between winning percentage is 100%, the difference between 677 if winning is 99%. Shishi learned this after watching scores of the fourth set, with no set up (?) Cherish the AlphaGo labeled bug state, is really not easy.
중국어 -> 영어 구글 번역
- Nature v13 = 판후이와 대국했던 시절(네이쳐 논문발표) 버전의 알파고
- v18 = 이세돌과 대국한 버전의 알파고 (하드웨어 동일?)
- v18 의 기력 측정은 Nature v13 과 4점 접바둑을 통해 측정한 기력
댓글6
-
세상의모든계산기
출처 : http://www.bbsdigest.com/thread/index?bid=87&tid=31270999
I'm a PhD student in Computational Neuroscience/Machine Learning who attended a talk today at UCL by David Silver, lead author on the AlphaGo Nature paper: http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html Although unfortunately I didn't take any pictures, I can confirm he did show us some slides on AlphaGo's evaluation functions and how their assessment of the probability of winning changed during the course of each match.
Since I heard there was some interest about whether the game is balanced in its initial state, I looked carefully at the initial intersection with the y-axis, corresponding to the point at which no moves had been played. I can confirm that according to the Value Network's assessment, white has an initial probability of winning bigger that 50%, my guess being 53% (the scale used a 25% interval and so was very hard to read). By contrast, the Monte Carlo rollout had what looked like an almost exact 50-50 assessment. Although AlphaGo uses both assessments, David Silver said that the Value Network is in general more accurate and is thus more highly weighted in the latest versions of AlphaGo. So it's fair to say AlphaGo thinks white (with 7.5 komi) has a small advantage.
Also, one other interesting tidbit is that according to Deepmind's internal assessment, AlphaGo's ELO was much, much bigger than Lee Sedol's (above 4000 iirc). However, David Silver acknowledged that he didn't really trust their internal assessment as AlphaGo was only playing versions of itself by reinforcement learning, and so may have been completely unaware of surprising strategies which can beat it. Which is why they had to play Lee Sedol in those exciting matches (and indeed, according to their internal ELO they probably would have expected 5-0 not 4-1)
Hope you find this interesting anyway, I sure did!요약
- 알파고 가치망에서는 덤7.5집일 때 백이 약간이나마 유리하다고 평가
- 알파고 ELO 4500 은 간접측정이라 신뢰성이 부족.
-
세상의모든계산기
구글 번역 사이트가 인공신경 지능망으로 업그레이드 되었다고 합니다. (2016-11-16)
그래서 위의 영문을 번역시켜 보았습니다.저는 Computational Neuroscience / Machine Learning의 박사 과정 학생으로서 AlphaGo Nature 논문의 수석 저자 David Silver가 UCL에서 오늘 연설을했습니다 : http://www.nature.com/nature/journal/v529/n7587/full /nature16961.html 불행히도 사진을 찍지는 않았지만 AlphaGo의 평가 기능에 대한 슬라이드와 각 경기가 진행되는 동안 우승 확률에 대한 평가가 어떻게 달라지는 지 확인할 수있었습니다.
게임이 초기 상태에서 균형을 이루는 지에 대한 관심이 있다고 들었으므로 움직이지 않는 지점에 해당하는 y 축과의 초기 교차점을주의 깊게 살펴 봤습니다. Value Network의 평가에 따르면 흰색은 초기 확률이 50 % 이상인 것으로 나타났습니다. 내 생각에 53 % (25 %의 눈금을 사용했기 때문에 읽는 것이 매우 어려웠습니다)입니다. 대조적으로, 몬테카를로 롤아웃은 거의 정확한 50-50 평가처럼 보였습니다. AlphaGo는 두 가지 평가를 모두 사용하지만 David Silver는 Value Network가 일반적으로 정확하고 AlphaGo의 최신 버전에 더 가중되어 있다고 말했습니다. 그래서 AlphaGo는 흰색 (7.5 komi)이 작은 이점을 가지고 있다고 생각한다고 말하는 것은 공평합니다.
또한, 흥미로운 또 하나의 재미있는 점은 Deepmind의 내부 평가에 따르면 AlphaGo의 ELO가 Lee Sedol (4000 iirc 이상)보다 훨씬 크다는 것입니다. 그러나 David Silver는 AlphaGo가 강화 학습을 통해 버전을 재생하기 때문에 내부 평가를 실제로 신뢰하지 않았기 때문에이를 극복 할 수있는 놀라운 전략을 전혀 알지 못했을 수도 있음을 인정했습니다. 그래서 그들이 흥미 진진한 경기에서 Lee Sedol과 경기를해야했던 이유입니다. (실제로 내부 ELO에 따르면 그들은 아마도 5-0에서 4-1로 예상했을 것입니다)
어쨌든이 재미있는 것을 찾으시기 바랍니다.와우... 인상적이네요.
-
세상의모든계산기
참고 : 한국기원 기사 랭킹제도
https://www.baduk.or.kr/record/ranking_info.asp- 승률 기대치 = E(d) =
- 조정되는 점수 =
K=16,
α=0.8=패자에게만 주어지는 위로점수? (디플레이션 방지 목적)
* 가중치
예선 본선 결승전(도전기) 1등급 기전 1.5 2.3 3.0 2등급 기전 1.3 1.9 2.5 3등급 기전 1.0 1.5 2.0 제한 기전 및 특별 대국 1.0 1.0 1.5 * 임시점수 : 대국 숫자가 적은 선수는 임시점수제도를 통해 점수 부여
-
세상의모든계산기
절예 // 가중치 개선 진행중?
카타고 (18*384nbt) // 가중치 개선 진행중
카타고 (60*320)
카타고 (40*384)
카타고 (40*256)
카타고 (30*256)
카타고 (20*256)
알파고 제로 (40*256, 40일)
릴라 제로 #272 (40*256)
미니고 v17 (20*256)
미니고 v16 (40*256)
알파 제로 (20*256, 36시간)
엘프고 v2 (20*256)
알파고 제로 (20b, 3일)
알파고 마스터
인간 프로 기사 GOAT
알파고 리 (=인간 프로 기사 최상급)
인간 프로 기사 현역
알파고 판
기준 : 블럭*채널, 가장 강한 가중치 버전
직접 대국하지 않은 것이 많아 추정일 뿐임.
https://www.reddit.com/r/baduk/comments/hma3nx/unified_elo_rating_for_ais/
위 글을 기본으로 작성한 순위표임. / SHKD13 작성https://github.com/breakwa11/GoAIRatings#go-ai-ratings
기본적으로는 여기서 많이 가져온 듯 하고,
알파고와 비교할 수 있는 것은 엘프고 개발자의 멘트가 중요했던 듯 싶음.
세상의모든계산기 님의 최근 댓글
> 자동차 회사의 노조가 "노조와 합의 없이 AI로봇을 공장에 들일 수 없다"는 선언을 하고 있어. 위의 내용에 적용하여 해결 방안을 만들어 줘. ✦ 네, 아주 현실적이고 시의적절한 시나리오입니다. 자동차 회사의 노조 선언은 앞으로 여러 산업 현장에서 벌어질 일의 축소판과도 같습니다. 이 문제를 앞서 나눈 대화의 해결 방안에 적용하여, '기업-노조-정부' 3자가 참여하는 '미래 지향적 대타협: AI 전환 파트너십 구축 방안'을 구체적으로 만들어 보겠습니다. 상황 분석: 노조의 선언은 '저항'이 아닌 '협상 요구' 먼저, 노조의 선언을 "기술을 맹목적으로 거부하는 러다이트 운동"으로 해석해서는 안 됩니다. 이는 일자리의 미래와 인간의 존엄성에 대한 조합원들의 지극히 합리적인 '불안'의 표현이자, 변화의 과정에서 소외되지 않고 주체적으로 참여하겠다는 강력한 '협상 요구'입니다. 따라서 해결 방안의 목표는 노조를 억누르는 것이 아니라, 이들을 AI 전환의 가장 중요한 '파트너'로 만드는 것이어야 합니다. 해결 방안: 'AI 전환 파트너십' 3자 협약 모델 이 모델은 '사회적 안전망'과 '산업적 가속 페달'의 원리를 특정 산업 현장에 맞게 구체화한 것입니다. 1. 기업의 역할: '이익 공유'와 '재교육 투자'를 통한 신뢰 구축 기업은 AI 로봇 도입으로 얻게 될 막대한 이익을 독점하는 대신, 그 과실을 노동자들과 공유하고 이들의 미래에 투자하는 모습을 보여주어야 합니다. ① 생산성 향상 이익 공유제 도입: * AI 로봇 도입으로 발생하는 비용 절감액과 생산성 향상분의 일정 비율(예: 20%)을 노사 합의로 'AI 전환 기금'으로 적립합니다. 이 기금은 아래의 재교육 및 전환 배치 프로그램의 재원으로 사용됩니다. ② 대규모 사내 재교육 및 '신(新)직무' 전환 배치: * 단순 조립 라인의 노동자를 해고하는 대신, 이들을 새로운 시대에 필요한 인력으로 재교육하여 전환 배치합니다. 이것이 바로 '기여 인센티브' 개념을 기업 내에서 실현하는 것입니다. * '로봇 유지보수 및 운영 전문가': 현장 경험이 풍부한 노동자들이 로봇의 일상적인 점검, 유지보수, 운영을 책임집니다. * 'AI 시스템 모니터링 및 평가자': 로봇의 생산 데이터를 모니터링하고, 로봇의 움직임이나 작업 결과가 비정상적일 때 이를 식별하고 평가하는 역할을 합니다. (예: "이 로봇의 용접 불량률이 높아지고 있다.") * '공정 데이터 라벨러 및 AI 트레이너': 숙련된 인간 노동자의 정교한 움직임과 문제 해결 과정을 데이터로 기록하고, 이를 AI가 학습할 수 있도록 가공(라벨링)합니다. 이는 AI 로봇의 완성도를 높이는 가장 중요한 '데이터 노동'이며, 기존 노동자들에게 새로운 고부가가치 직무를 제공합니다. 2. 노조의 역할: '저항의 주체'에서 '전환의 주체'로 노조는 고용 안정을 보장받는 대신, AI 도입에 협력하며 조합원들이 새로운 시대에 적응하도록 이끄는 역할을 맡습니다. ① 단계적 AI 도입 협력: * 회사가 제안한 '이익 공유' 및 '재교육' 계획을 신뢰하고, AI 로봇 도입 자체에 대한 반대를 철회합니다. 대신, 가장 위험하거나 반복적인 공정부터 로봇을 도입하는 '단계적 계획'을 회사와 함께 수립합니다. ② 재교육 프로그램 공동 설계 및 운영: * 회사가 제공하는 재교육 프로그램이 실효성이 있는지 감시하고, 현장 노동자들의 눈높이에 맞게 커리큘럼을 공동으로 설계하고 운영합니다. ③ '신(新)직무'에 대한 임금 및 단체 협약 체결: * 'AI 트레이너', '로봇 운영 전문가' 등 새롭게 만들어진 직무에 대한 적정한 임금 수준, 노동 조건, 권익 보호를 위한 새로운 단체 협약을 회사와 체결합니다. 노조의 역할이 '기존 일자리 사수'에서 '미래 일자리의 가치 창출 및 권익 보호'로 진화하는 것입니다. 3. 정부의 역할: '안전망' 제공과 '가속 페달' 지원 정부는 이 대타협이 원활하게 이루어지도록, 기업과 노조 양측 모두에게 인센티브를 제공하고 최후의 안전망을 구축합니다. ① 'AI 전환 투자 세제 혜택' 제공 (가속 페달): * 회사가 'AI 전환 기금'에 출연하는 금액과, 노동자 재교육에 투자하는 비용에 대해 파격적인 세액 공제 혜택을 줍니다. 이는 회사가 노동자를 해고하는 대신 재교육을 선택하도록 유도하는 강력한 당근이 됩니다. ② '전환기 고용보험' 적용 (안전망): * 불가피하게 전환 배치되지 못하는 소수의 노동자들을 위해, 일반 실업급여보다 더 긴 기간 동안, 더 높은 수준의 소득을 보장하는 특별 고용보험 프로그램을 적용합니다. 재취업 및 창업 지원도 병행합니다. ③ 국가적 '기본소득/기여 인센티브' 모델의 시범 사업으로 지정: * 이 자동차 공장의 사례를 국가 전체의 사회 시스템 전환을 위한 중요한 시범 사업으로 지정하고, 재교육 참여자나 신직무 종사자에게 국가 차원의 '기여 인센티브'를 추가로 제공하는 방안을 모색합니다. 결론 이러한 3자 파트너십을 통해, 노조의 선언은 더 이상 '위기'가 아닌 '기회'가 됩니다. 기업은 노사 갈등 없이 안정적으로 미래 경쟁력을 확보하고, 노동자들은 일자리를 잃는 대신 새로운 기술 시대의 주역으로 거듭나며, 정부는 사회적 혼란을 최소화하며 산업 구조 전환을 성공적으로 이끌 수 있습니다. 이는 AI 시대의 갈등을 해결하는 가장 현실적이고 상생 가능한 모델이 될 것입니다. 2026 01.28 은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18