• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 고정점 반복법, Fixed Point Iteration (비선형 방정식의 해를 찾는 방법)

    • Profile
      • 세상의모든계산기
      • 2024.10.14 - 18:25 2024.10.14 - 13:39 580 2

    시행착오법을 통해 비선형 방정식의 해를 찾는 방법은 여러 가지가 있으며,

    그 중 하나가 "고정점 반복법" (Fixed Point Iteration)입니다. 

    image.png

    고정점 반복법 (Fixed Point Iteration)

     

    - 정의: 함수 \( f(D) = 0 \)의 해를 구하기 위해, 반복적으로 특정 형식의 함수 \( g(D) \)를 설정하여 \( D_{\text{new}} = g(D) \)의 형태로 업데이트하는 방법입니다.
    - 용도: 비선형 방정식, 유체 유동 해석, 공학적 문제 등 다양한 분야에서 해를 찾기 위해 사용됩니다.

     

    기타 관련 방법

     

    - 뉴턴-랩슨 방법 (Newton-Raphson Method):

      - 기울기를 이용하여 해를 찾아가는 방법으로, 일반적으로 더 빠른 수렴 속도를 제공합니다. 하지만 초기값에 대한 의존성이 큽니다.

    - 바이섹션 방법 (Bisection Method):

      - 함수의 값을 이용하여 중간값을 반복적으로 좁혀가는 방법입니다. 안정적이지만 수렴 속도는 상대적으로 느립니다.

    - 이분법 (Secant Method):

      - 두 점의 기울기를 이용해 해를 찾는 방법으로, 뉴턴-랩슨 방법의 대안으로 사용할 수 있습니다.

     

    각 방법은 특정 상황에서의 장단점이 있으므로 문제에 맞는 방법을 선택하는 것이 중요합니다.

     


     

    고정점 반복법의 예시 (2차방정식)

     

     

    2차 방정식 예제로 주어진 방정식이 다음과 같다고 가정하겠습니다:

    \[
    x^2 - 3x - 4 = 0
    \]

    이 방정식을 고정점 형태로 변형하여 해결해 보겠습니다.

     

    1. 방정식 변형

     

    방정식을 고정점 형태로 변형하려면 \( x \)에 대해 다시 정리해야 합니다. 예를 들어, 위의 방정식에서 \( x \)에 대한 식으로 바꿉니다:

    \[
    x = \frac{3x + 4}{x} = 3 + \frac{4}{x}
    \]

     

    이제 고정점 함수 \( g(x) \)를 정의할 수 있습니다:

    \[
    g(x) = 3 + \frac{4}{x}
    \]

     

    2. 초기값 설정

     

    고정점 반복법을 시작하기 위해 초기값을 설정합니다. 예를 들어, \( x_0 = 5 \)로 시작하겠습니다.

     

    3. 반복 계산

     

    이제 반복적으로 \( x \) 값을 업데이트합니다:

    \[
    x_{\text{new}} = g(x)
    \]

    1. 첫 번째 반복:
       \[
       x_1 = g(x_0) = 3 + \frac{4}{5} = 3 + 0.8 = 3.8
       \]

    2. 두 번째 반복:
       \[
       x_2 = g(x_1) = 3 + \frac{4}{3.8} \approx 3 + 1.0526 \approx 4.0526
       \]

    3. 세 번째 반복:
       \[
       x_3 = g(x_2) = 3 + \frac{4}{4.0526} \approx 3 + 0.9875 \approx 3.9875
       \]

    4. 네 번째 반복:
       \[
       x_4 = g(x_3) = 3 + \frac{4}{3.9875} \approx 3 + 1.0031 \approx 4.0031
       \]

    이런 식으로 계속 반복하여 \( x_n \)이 수렴할 때까지 진행합니다.

     

    4. 수렴 확인

     

    반복을 계속 진행하다 보면, \( x \) 값이 안정화되어 수렴하게 됩니다.

    예를 들어, 수렴 조건으로 \( |x_{\text{new}} - x_{\text{old}}| < \epsilon \) (여기서 \( \epsilon \)은 설정한 허용 오차) 를 사용할 수 있습니다.

     

    * g(x) 함수에 따라 수렴하지 않고 발산할 수도 있습니다. 

    수렴 조건:

    • |g'(x)| < 1 인 구간에서 수렴이 보장됩니다.
    • 이는 연속 반복에서 점들이 서로 가까워짐을 의미합니다.
    Attached file
    image.png 6.4KB 26
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    [ticalc.org 펌] Gamma & Zeta function +more. 감마 제타 함수 외 28 2 2025 10.29 [fx-9860] 커서 모양 설명 15 2025 10.28 SHARP EL-738XT, TVM Solver 항목 입력 순서에 따라 결과값이 달라진다면? 31 2 2025 10.26 CASIO 모델명 fx-290A(?) fx-375ES A(?) 45 2025 10.26 fmax =함수의 최대값일 때의 x값, fmin =함수의 최소값일 때의 x값 59 1 2025 10.26

    세상의모든계산기 님의 최근 댓글

    2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요.   영상 찾아보니 이 가능성이 가장 높은 듯 합니다.  https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요.  2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263   sgn(x)   내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기  2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다.   모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3),  48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28
    글쓴이의 서명작성글 감추기 

    댓글2

    • Profile 0
      세상의모든계산기
      2024.10.14 - 13:41 2024.10.14 - 13:40 #49854

      TI-nspire 에서 구현


      image.png

       

      그래프로 확인

      image.png

      Attached file
      image.png 47.4KB 16 image.png 47.9KB 14 fixed_point_iteration.tns 5.2KB 14
      댓글
    • 1
      Profile 0
      세상의모든계산기
      2024.10.14 - 14:02 2024.10.14 - 13:49 #49863

      g(x) 형식은 여러가지가 될 수 있습니다.


      이번엔 x = g(x) = 'x의 2차식' 꼴로 설정해 보겠습니다. 

      image.png

      수렴하긴 했는데... x=4 를 구하고 싶었지만, x=-1이 구해졌습니다. 

      그렇다고 x0=5 으로 시작하면 발산해버리고 맙니다. 

       

      x=4가 구해지지 않는 것은 그래프 모양으로 확인할 수 있습니다. 

      image.png

      앞서 보았던 분수함수와 달리 2차함수는 g(x) 값이 y=x 의 아래 있기 때문에 x가 더 작은 값으로 이동해 갑니다. 

       

      따라서

       

      g(x)|x<-1 는 -1로 

      g(x)|-1<x<4 는 -1로 

      g(x)|4<x ∞ 로 이동하게 되어

      x=4 로 수렴하지는 못합니다. 

       

      Attached file
      image.png 51.2KB 12 image.png 52.2KB 12
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    2
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.