• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 고정점 반복법, Fixed Point Iteration (비선형 방정식의 해를 찾는 방법)

    • Profile
      • 세상의모든계산기
      • 2024.10.14 - 18:25 2024.10.14 - 13:39 771 2

    시행착오법을 통해 비선형 방정식의 해를 찾는 방법은 여러 가지가 있으며,

    그 중 하나가 "고정점 반복법" (Fixed Point Iteration)입니다. 

    image.png

    고정점 반복법 (Fixed Point Iteration)

     

    - 정의: 함수 \( f(D) = 0 \)의 해를 구하기 위해, 반복적으로 특정 형식의 함수 \( g(D) \)를 설정하여 \( D_{\text{new}} = g(D) \)의 형태로 업데이트하는 방법입니다.
    - 용도: 비선형 방정식, 유체 유동 해석, 공학적 문제 등 다양한 분야에서 해를 찾기 위해 사용됩니다.

     

    기타 관련 방법

     

    - 뉴턴-랩슨 방법 (Newton-Raphson Method):

      - 기울기를 이용하여 해를 찾아가는 방법으로, 일반적으로 더 빠른 수렴 속도를 제공합니다. 하지만 초기값에 대한 의존성이 큽니다.

    - 바이섹션 방법 (Bisection Method):

      - 함수의 값을 이용하여 중간값을 반복적으로 좁혀가는 방법입니다. 안정적이지만 수렴 속도는 상대적으로 느립니다.

    - 이분법 (Secant Method):

      - 두 점의 기울기를 이용해 해를 찾는 방법으로, 뉴턴-랩슨 방법의 대안으로 사용할 수 있습니다.

     

    각 방법은 특정 상황에서의 장단점이 있으므로 문제에 맞는 방법을 선택하는 것이 중요합니다.

     


     

    고정점 반복법의 예시 (2차방정식)

     

     

    2차 방정식 예제로 주어진 방정식이 다음과 같다고 가정하겠습니다:

    \[
    x^2 - 3x - 4 = 0
    \]

    이 방정식을 고정점 형태로 변형하여 해결해 보겠습니다.

     

    1. 방정식 변형

     

    방정식을 고정점 형태로 변형하려면 \( x \)에 대해 다시 정리해야 합니다. 예를 들어, 위의 방정식에서 \( x \)에 대한 식으로 바꿉니다:

    \[
    x = \frac{3x + 4}{x} = 3 + \frac{4}{x}
    \]

     

    이제 고정점 함수 \( g(x) \)를 정의할 수 있습니다:

    \[
    g(x) = 3 + \frac{4}{x}
    \]

     

    2. 초기값 설정

     

    고정점 반복법을 시작하기 위해 초기값을 설정합니다. 예를 들어, \( x_0 = 5 \)로 시작하겠습니다.

     

    3. 반복 계산

     

    이제 반복적으로 \( x \) 값을 업데이트합니다:

    \[
    x_{\text{new}} = g(x)
    \]

    1. 첫 번째 반복:
       \[
       x_1 = g(x_0) = 3 + \frac{4}{5} = 3 + 0.8 = 3.8
       \]

    2. 두 번째 반복:
       \[
       x_2 = g(x_1) = 3 + \frac{4}{3.8} \approx 3 + 1.0526 \approx 4.0526
       \]

    3. 세 번째 반복:
       \[
       x_3 = g(x_2) = 3 + \frac{4}{4.0526} \approx 3 + 0.9875 \approx 3.9875
       \]

    4. 네 번째 반복:
       \[
       x_4 = g(x_3) = 3 + \frac{4}{3.9875} \approx 3 + 1.0031 \approx 4.0031
       \]

    이런 식으로 계속 반복하여 \( x_n \)이 수렴할 때까지 진행합니다.

     

    4. 수렴 확인

     

    반복을 계속 진행하다 보면, \( x \) 값이 안정화되어 수렴하게 됩니다.

    예를 들어, 수렴 조건으로 \( |x_{\text{new}} - x_{\text{old}}| < \epsilon \) (여기서 \( \epsilon \)은 설정한 허용 오차) 를 사용할 수 있습니다.

     

    * g(x) 함수에 따라 수렴하지 않고 발산할 수도 있습니다. 

    수렴 조건:

    • |g'(x)| < 1 인 구간에서 수렴이 보장됩니다.
    • 이는 연속 반복에서 점들이 서로 가까워짐을 의미합니다.
    Attached file
    image.png 6.4KB 27
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd Generation fx-991CW) 83 4 2025 12.28 xe(rhymix) 짧은주소 사용 중 리디렉션으로 인한 '색인 생성 안됨' 문제 해결중 61 1 2025 12.18 샤프 계산기(EL-W506T, EL-5500X 등) 정적분 계산시 오차 주의 - 정적분 정밀도 높이기 139 2 2025 12.11 미래 AI의 세 번째 임계점: '자율 AI 에이전트'와 '효율성'의 만남 421 2025 11.06 AI 발전의 두 번째 임계점: LLM과 창발적 능력의 시대. written by gemini-2.5 420 2025 11.06

    세상의모든계산기 님의 최근 댓글

    기간을 넉넉하게 잡고 봐야 할 듯 싶구요. 기다려 본 결과... '실패함'이 떴습니다.     잘 된건지 잘 못된 건지 아무 변화가 없는건지... 뭐가 뭔지 모르겠네요.  2026 01.03 설명서 : https://www.casio.com/content/dam/casio/global/support/manuals/calculators/pdf/2022/f/fx-9910CW_EN.pdf 2026 01.02 참고 : 라플라스 해법 1- 문제풀이의 개요 [출처] 라플라스 해법 1- 문제풀이의 개요|작성자 공학 엔지니어 지망생 https://blog.naver.com/hgengineer/220380176222 2026 01.01 3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은  조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요.  100÷7 = 14.285714285714285714285714285714   소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다.  2025 12.30
    글쓴이의 서명작성글 감추기 

    댓글2

    • Profile 0
      세상의모든계산기
      2024.10.14 - 13:41 2024.10.14 - 13:40 #49854

      TI-nspire 에서 구현


      image.png

       

      그래프로 확인

      image.png

      Attached file
      image.png 47.4KB 17 image.png 47.9KB 15 fixed_point_iteration.tns 5.2KB 17
      댓글
    • 1
      Profile 0
      세상의모든계산기
      2024.10.14 - 14:02 2024.10.14 - 13:49 #49863

      g(x) 형식은 여러가지가 될 수 있습니다.


      이번엔 x = g(x) = 'x의 2차식' 꼴로 설정해 보겠습니다. 

      image.png

      수렴하긴 했는데... x=4 를 구하고 싶었지만, x=-1이 구해졌습니다. 

      그렇다고 x0=5 으로 시작하면 발산해버리고 맙니다. 

       

      x=4가 구해지지 않는 것은 그래프 모양으로 확인할 수 있습니다. 

      image.png

      앞서 보았던 분수함수와 달리 2차함수는 g(x) 값이 y=x 의 아래 있기 때문에 x가 더 작은 값으로 이동해 갑니다. 

       

      따라서

       

      g(x)|x<-1 는 -1로 

      g(x)|-1<x<4 는 -1로 

      g(x)|4<x ∞ 로 이동하게 되어

      x=4 로 수렴하지는 못합니다. 

       

      Attached file
      image.png 51.2KB 13 image.png 52.2KB 13
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    2
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.