- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
원통형 파이프에 종이를 감을때, 전체 원통의 두께는?
ㄴ 이미지 생성 : Gemini 1.5 Flash
직경 d_cm 인 원통형 파이프에, 두께 t_mm 인 종이를, L_meter 감으면
롤(원통)의 중심에서 몇 cm 까지 두꺼워질까요?
방법A) 감긴 단면의 면적으로 풀기
단면을 잘라 보았을 때, 전체 원통의 면적 = 종이의 면적 + 파이프의 면적이 됩니다.
(가정 : ⓐ 완전 밀착 ⓑ 압력에 의한 종이 길이나 두께의 변성 없음)
따라서 $\pi R^2-\pi r_0^2=t_{mm} \cdot L_m$ 가 성립합니다.
이 식을 이용해 solve 로 풀거나,
변수를 다른 변수로 정리해 풀면 답이 나옵니다.
문제1) 파이프 지름(d)이 6 inch, 종이 두께가 0.1mm, 종이 길이가 500m 일 때, 원통 중심에서 종이 끝까지의 길이(전체 반지름)는?
문제2) 파이프 지름(d)이 8.8cm, 종이 두께가 0.5mm, 종이 길이가 150m 일 때는?
댓글4
-
세상의모든계산기
TI-nspire 에서 단위를 수식에 미리 넣으면?
자동으로 approx 로 변형되어 버리네요. 보기가 조금 더 힘든 듯...
그냥 변수만 대입해 넣고, 숫자 대입할 때 한가지 단위(meter)로 통일하는 편이 좋겠습니다.
이 편이 단위 때문에 발생할 수 있는 오해 소지도 적을 것 같구요.
-
세상의모든계산기
최고 종이를 많이 감았을 때 허용 지름(2r)을 파이프 포함하여 42cm이라고 하면, 총 종이의길이는 몇 미터까지 감을 수 있나?
파이프 지름(d)은 17.5cm 이고 종이 두께(t)는 0.1mm입니다.
-
세상의모든계산기
방법B) 감긴 횟수로 계산
1. 첫 바퀴에 감긴 종이의 길이는 \( l_1 = \pi (d+t) \) (여기서 \( d \)는 원통 파이프의 직경)이다.
ㄴ 종이의 안쪽 원을 기준으로 길이를 재거나, 바깥쪽 원을 기준으로 길이를 잴 수도 있는데, 종이의 중심을 기준으로 재는 것이 가장 합리적이겠죠?ㄴ 안쪽 원보다는 길고, 바깥쪽 원보다는 짧아야 하니...
2. 두번째 바퀴에 감긴 종이의 길이는 \( l_2 = 2\pi\times r_1 = l_1 + 2\pi t \) 입니다.3. 세번째 바퀴에 감긴 종이의 길이는 \( l_3 = 2\pi\times r_2 = l_1 + 4\pi t \) 입니다.
따라서, 매 바퀴마다 둘레는 \( 2\pi t \)씩 더해집니다.
n바퀴째에 감긴 종이의 길이는 \( l_n = l_1 + n\cdot 2\pi t \) 가 됩니다.
종이를 \( n \) 바퀴 감았을 때의 총 길이와 반지름:
1. 반지름 증가:
- 첫 번째 감기 전의 반지름: \( r_0 = \frac{d}{2} \)
- 종이를 \( n \) 바퀴 감은 후의 반지름 \( r_n \)은:
\[
r_n = r_0 + n \times t = \frac{d}{2} + n \times t
\]2. 감은 종이의 총 길이:
- 종이를 \( n \) 바퀴 감았을 때의 총 종이 길이 \( L_n \)은:
\[
L_n = l_1 + l_2 + l_3 + \dots + l_n
\]
- 각 바퀴마다 길이는 \( l_n = d\pi + n\cdot 2\pi t \)이므로, 총 길이를 구하려면 이를 합산합니다:
\[
L_n = \sum_{k=1}^{n} \left( d\pi + k \cdot 2\pi t \right)
= nd\pi + \left( \pi t \cdot (n(n+1)) \right)
\]
여기서 \( \dfrac{n(n+1)}{2} \)는 1부터 \( n \)까지의 정수들의 합입니다.n(감은 횟수)을 먼저 구하고, n을 $ r_n $ 공식에 대입하면 값이 찾아집니다.
본문방법 r=0.147383629719*_m
댓글방법 r=0.14735948683579
본문과 약~~~간의 오차가 있긴 한데... 무시해도 될 것 같습니다.
그런데 왜 차이가 났을까요?
"본문의 방식은 부피가 직사각형 기준이라서 문제가 없지만,
댓글의 방식은 매 바퀴마다 안쪽은 부피가 겹치고, 바깥쪽은 부피가 모자르는 기하학적 구조라서 발생하는 오차가 아닐까?" 추정해 봅니다.
세상의모든계산기 님의 최근 댓글
예시11) 선형 연립방정식에서 답이 false 로 나올 때 https://allcalc.org/55823 2025 10.22 approx(참 해) 값이 이상하게 튀는 것 같아서 AI를 이용해 (python 으로) 구해보았습니다. * python 의 유효자릿수가 nspire 의 유효자릿수(14자리~15자리)보다 더 길기 때문에 시도하였습니다. ** 원래는 wolfram alpha 로 구해보려고 했는데, 울프람에서는 수식 길이가 너무 길다고 거부하는 바람에 포기하였습니다. 그 결과, AI approx(참 해) 값은 정상 범주에 포함되었고, 이는 solve()로 구한 대부분의 결과값과 유사하였습니다. 그럼 nspire 의 approx(참 해)는 왜 튀었나? 참 해에 더하기,빼기,곱하기,나누기 가 너무 많이 포함되어 있다보니, 모두 계산하고 나면 오차가 누적&증폭되어 버리는 것 같습니다. 그래서 오히려 solve의 numeric 한 접근보다도 더 큰 오차가 발생한 듯 하고, 그래서 적절한 해의 x 구간을 벗어나버린 듯 합니다. 그것이 처음의 solve 에서 false 를 이끌어낸 주 원인이 아니었을까요? (추정) 2025 10.21 그래프로 확인 그래프 함수로 지정하고, 매우 좁은 구간으로 그래프를 확대해 보면 불연속적인 그래프 모습이 확인됩니다. 이것은 한계 digits(15자리) 이상을 처리하지 못하기 때문일 것이구요. 다만 특이한 점은, 그래프상으로 교점에 해당하는 구간이 73.049507058477≤x≤73.049507058484 사이로 나오는데 -> 이 구간은 'solve에서 여러 방법으로 직접 구해진 해들'은 포함되는 구간입니다. -> 하지만, '참값인 해를 계산기로 구한 appprox 값 x=73.049507058547'은 포함되지 않는 구간입니다. 2025 10.21 tns 파일 첨부 sol_num_vs_exact.tns 2025 10.21 검증하면 1번 식을 x에 대해 정리하고, → 그 x 값을 2번 식에 대입해 넣으면 → 그 결과로 x는 사라지고 y에 대한 식이 되니, y에 대해 정리하면 참값 y를 얻음. 얻은 y의 참값을 처음 x에 대해 정리한 1번식에 대입하면 참 값 x를 얻음. 구해진 참값의 근사값을 구하면 x=73.049507058547 and y=23.747548955927 참 값을 approx() 로 변환한 근사값은 원래 방정식 모두를 만족할 수 없지만, linsolve() 로 찾은 근사값과, AI로 참 값을 근사변환한 값은 원래 방정식 모두를 만족할 수 있습니다. 2025 10.21