- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
인공지능(AI) 수학능력 TEST
앞의 글에서 조니님께서 질문하신 것을 인공지능에게 물어봤습니다.
과연 답변을 잘 할까요?
일단 울프람알파는 명확하게 답변을 안하네요.

댓글9
-
세상의모든계산기2024.05.21 - 10:41 #40794
ChatGPT-4o 에게 물어 봤습니다.
To determine if the equation
is true or false, we can simplify and compare both sides.
### Left Side:
### Right Side:
### Using the Identity for $\arctan$:
We use the identity for the sum of arctangents:
This identity holds when .
In this case, let and :Since , the sum formula becomes:
Thus,
Now, substitute this back into the original equation:
### Left Side Simplification:
### Comparing Left and Right Sides:
The simplified left side is:
This matches the right side exactly. Therefore, the original equation is:
Thus, the statement is **true**.
-
조니
저도 chatgpt-4인데 false가 나오네요. 이 것도 부호 계산을 틀리게 하네요. ㅠㅠ
-
조니
chatgpt 3.5는 true가 나오는게 approximate를 사용해서 같다고 결론을 도출하는데, 이건 아닌거 같습니다. ㅎㅎ
그리고 한글 버전에서는 계산이 안되는데 영문 버전에서는 그나마 엉터리 같지만 결과가 근사하게 나오기는 하네요.
-
-
세상의모든계산기2024.05.21 - 10:44 #40799
제미나이에게도 같은 질문으로 물어 봤습니다.
The statement "-Pi + ArcTan[11/(5 Sqrt[3])] == -Pi/2 - ArcTan[(5 Sqrt[3])/11]" is false.
To prove this, we can simplify both sides of the equation:
Left side:
-Pi + ArcTan[11/(5 Sqrt[3])]
= -Pi + ArcTan[11/(5 * 3^(1/2))]
= -Pi + ArcTan[11/(5 * (3^1/2))]
= -Pi + ArcTan[(11 * 3^(-1/2)) / 5]
= -Pi + ArcTan[(11 * (1/3^(1/2))) / 5]
= -Pi + ArcTan[(11/3^(1/2)) / 5]
Right side:
-Pi/2 - ArcTan[(5 Sqrt[3])/11]
= -Pi/2 - ArcTan[(5 * 3^(1/2)) / 11]
= -Pi/2 - ArcTan[(5 * (3^1/2)) / 11]
= -Pi/2 - ArcTan[(5/11) * (3^1/2)]
= -Pi/2 - ArcTan[(5/11) * (1/3^(1/2))]
= -Pi/2 - ArcTan[(5/(11 * 3^(1/2)))]
= -Pi/2 - ArcTan[(5/(11 * (1/3^(1/2)))]
= -Pi/2 - ArcTan[(5/(11/3^(1/2)))]
= -Pi/2 - ArcTan[(5 * 3^(1/2)) / 11]
Comparing the simplified forms of both sides, we see that they are not equal. Therefore, the original statement is false.
Additional verification:
We can also use a graphing calculator to verify that the two expressions do not have the same value. Plotting both expressions on a graph, we can see that they have different y-intercepts and slopes. This confirms that the two expressions are not equal.
Conclusion:
Based on the above analysis, we can conclude that the statement "-Pi + ArcTan[11/(5 Sqrt[3])] == -Pi/2 - ArcTan[(5 Sqrt[3])/11]" is false.
-
조니
제미나이 저도 해 봤는데 true라고 나오네요
그런데 이건 좀 희한한게 tan(pi/6)을 -루트3/3으로 부호를 틀리게 계산을 했는데도 결과가 맞다고 도출하는게 올바른 결과인지 의문입니다.
-
세상의모든계산기
Copilot 에게도 물어 봤습니다.
True! The given equation holds. Both sides are equal. Here’s the breakdown:1. Start with the left-hand side (LHS):
2. Simplify the fraction:
3. Use the identity:
Applying this to our expression:
4. Simplify the second term:
5. Combine the arctan terms:
6. Use the identity again:
Applying this to our expression:
7. Simplify the numerator:
And the denominator:
8. Final result:
Since
, we have:
Therefore, the LHS equals
.
9. Now let’s look at the right-hand side (RHS):
10. We already found that
So the RHS also equals
.
Since both sides are equal, the given equation is true! �
세상의모든계산기 님의 최근 댓글
교점이 2개 이상일때 모든 값을 구하는 법 계산기마다 가능/불가능이 갈릴 수도 있고, 수식에 따라 가능/불가능이 갈릴 수도 있죠. 불확실할때는 그래프로 확인하세요. 2025 12.16 T가 410인 해를 찾는 방법 -> 초기값을 입력하세요. [공학용 계산기] 공학용 계산기의 꽃? solve (솔브) 기능 이해하기 (Newton-Raphson 법, 뉴튼법) https://allcalc.org/11532 2025 12.16 참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11 일반 계산기는 보통 리셋기능이 따로 없기 때문에, 다른 요인에 영향을 받을 가능성은 없어 보이구요. '원래는 잘 되었는데, 지금은 설정 값이 날아간다'면 메모리 값을 유지할만큼 배터리가 꾸준하게 공급되지 않기 때문일 가능성이 높다고 봐야겠습니다. - 태양광이 있을 때는 계산은 가능하지만, 서랍등에 넣으면 배터리가 없어서 리셋 https://blog.naver.com/potatoyamyam/223053309120 (교체 사진 참조) 1. 배터리 준비: * 다이소 등에서 LR54 (LR1130) 배터리를 구매합니다. (보통 4개 들이 1,000원에 판매됩니다. LR44와 높이가 다르니 혼동하시면 안됩니다.) 2. 준비물: * 작은 십자드라이버 (계산기 뒷면 나사용. 이것도 없으시면 다이소에서...) 3. 커버 분해: * 계산기 뒷면의 나사를 풀고, 머리 부분(윗부분)의 커버를 조심스럽게 분해합니다. (참고해주신 블로그 사진을 보시면 이해가 빠르실 겁니다.) 4. 배터리 교체: * 기존 배터리를 빼냅니다. * 새 LR54 배터리의 '+'극 방향을 정확히 확인하여 제자리에 넣어줍니다. (대부분의 경우 '+'극이 위로 보이도록 넣습니다.) 5. 조립: * 커버를 다시 닫고 나사를 조여줍니다. * 블로그 사진을 보니 배터리 연결선 등이 눌려서 씹혀 있네요. 원래 씹히도록 설계를 안하는데, 원래 그렇게 만들어 놓은 건지? 모르겠네요. 여튼 씹히면 단선될 가능성이 있으니, 잘 보시고 플라스틱 틈새 등으로 적절히 배치해서 안씹히게 하는 것이 좋습니다. 6. TAX 재설정: * 계산기의 전원을 켜고 TAX 요율을 10%로 다시 설정합니다. 2025 12.10