• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 크래머의 규칙 = 크라메르 공식 = Cramer's Rule

    • Profile
      • 세상의모든계산기
      • 2024.10.19 - 13:47 2015.10.23 - 22:33 2232 3

    연립 방정식을 크래머의 규칙(Cramer’s Rule)을 사용하여 풀어 보겠습니다. 

     

    \[
    \begin{bmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{bmatrix}
    \begin{bmatrix}
    x \\
    y \\
    z
    \end{bmatrix}
    =
    \begin{bmatrix}
    2 \\
    3 \\
    1
    \end{bmatrix}
    \]

     

    1. 행렬과 열 벡터 정의


    - 계수 행렬 \( A \):
    \[
    A = \begin{bmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{bmatrix}
    \]
    - 변수 벡터 \( \mathbf{x} \):
    \[
    \mathbf{x} = \begin{bmatrix}
    x \\
    y \\
    z
    \end{bmatrix}
    \]
    - 상수 벡터 \( \mathbf{b} \):
    \[
    \mathbf{b} = \begin{bmatrix}
    2 \\
    3 \\
    1
    \end{bmatrix}
    \]

     

    2. 행렬식 계산

     

    크래머의 규칙을 사용하려면 먼저 계수 행렬 \( A \)의 행렬식 \( D \)를 계산합니다.

    \[
    D = \begin{vmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{vmatrix}
    \]

    행렬식 \( D \)는 다음과 같이 계산됩니다:

    \[
    D = 4 \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix}
    - 5 \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix}
    \quad \cancel{+ 0 \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix}}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix} = (1)(2) - (2)(5) = 2 - 10 = -8 \)

    - \( \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix} = (2)(2) - (2)(1) = 4 - 2 = 2 \)

    따라서, \( D \)는 다음과 같이 계산됩니다:
    \[
    D = 4(-8) - 5(2) + 0 = -32 - 10 = -42
    \]

     

    3. 각 변수의 행렬식 계산

     

    각 변수 \( x, y, z \)에 대해 \( D_x, D_y, D_z \)를 계산합니다.

    \( D_x \) 계산
    \( D_x \)는 \( A \)의 첫 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_x = \begin{vmatrix}
    2 & 5 & 0 \\
    3 & 1 & 2 \\
    1 & 5 & 2
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_x = 2 \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix}
    - 5 \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix}
    + 0 \begin{vmatrix}
    3 & 1 \\
    1 & 5
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix} = -8 \) (이미 계산됨)

    - \( \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix} = (3)(2) - (2)(1) = 6 - 2 = 4 \)

    따라서 \( D_x \)는 다음과 같이 계산됩니다:
    \[
    D_x = 2(-8) - 5(4) + 0 = -16 - 20 = -36
    \]

    \( D_y \) 계산
    \( D_y \)는 \( A \)의 두 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_y = \begin{vmatrix}
    4 & 2 & 0 \\
    2 & 3 & 2 \\
    1 & 1 & 2
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_y = 4 \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix}
    - 2 \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix}
    + 0 \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix} = 4 \) (이미 계산됨)

    - \( \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix} = 2 \) (이미 계산됨)

    따라서 \( D_y \)는 다음과 같이 계산됩니다:
    \[
    D_y = 4(4) - 2(2) + 0 = 16 - 4 = 12
    \]

    \( D_z \) 계산
    \( D_z \)는 \( A \)의 세 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_z = \begin{vmatrix}
    4 & 5 & 2 \\
    2 & 1 & 3 \\
    1 & 5 & 1
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_z = 4 \begin{vmatrix}
    1 & 3 \\
    5 & 1
    \end{vmatrix}
    - 5 \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix}
    + 2 \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 3 \\
    5 & 1
    \end{vmatrix} = (1)(1) - (3)(5) = 1 - 15 = -14 \)

    - \( \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix} = (2)(1) - (3)(1) = 2 - 3 = -1 \)

    - \( \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix} = (2)(5) - (1)(1) = 10 - 1 = 9 \)

    따라서 \( D_z \)는 다음과 같이 계산됩니다:
    \[
    D_z = 4(-14) - 5(-1) + 2(9) = -56 + 5 + 18 = -33
    \]

     

    4. 변수 계산

     

    크래머의 규칙에 따라 각 변수는 다음과 같이 계산됩니다:

    \[
    x = \frac{D_x}{D} = \frac{-36}{-42} = \frac{36}{42} = \frac{6}{7}
    \]

    \[
    y = \frac{D_y}{D} = \frac{12}{-42} = -\frac{2}{7}
    \]

    \[
    z = \frac{D_z}{D} = \frac{-33}{-42} = \frac{33}{42} = \frac{11}{14}
    \]

     

    5. 최종 결과

     

    따라서 주어진 연립 방정식의 해는:
    \[
    x = \frac{6}{7}, \quad y = -\frac{2}{7}, \quad z = \frac{11}{14}
    \]

     

    참고 - https://ko.wikipedia.org/wiki/%ED%81%AC%EB%9D%BC%EB%A9%94%EB%A5%B4_%EA%B3%B5%EC%8B%9D

    Attached file
    image.png 6.6KB 37
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    CASIO 모델명 fx-290A(?) fx-375ES A(?) 5 2025 10.26 fmax =함수의 최대값일 때의 x값, fmin =함수의 최소값일 때의 x값 7 1 2025 10.26 분수식 solve시 오류 예시, 분모에 들어간 X³을 X로 치환해 해결? 7 2025 10.25 줄간격 test 4 2025 10.25 [fx-570 CW] 문자 변수에 값 저장하기 28 1 2025 10.24

    세상의모든계산기 님의 최근 댓글

    오류 발생 https://www.youtube.com/watch?v=dcg0x5SjETY 위 영상의 문제의 함수를 직접 구해 보았습니다.    그래프로는 잘 확인이 되는데...   fmin(), fmax() 함수로 직접 구해보니, 결과가 기대한 것과 다르네요.  구간을 넣지 않으니 fmim, fmax 둘 다에서 오류인 결과를 내놓습니다.    구간을 넣더라도, 적절하게 넣지 않으면, 답이 잘 안나오는 걸 확인할 수 있습니다.  fmin 은 그나마 x=0을 기준으로 나누지 않더라도 답이 나오는 편이지만,  fmax 는 -10~10 을 구간으로 넣을 때, 가운데 x=0 근방에서 그래프가 위로 솟아오르는 구간은 함수값을 확인하지 않는 듯 합니다.  ㄴ fmax가 더 열등해서 그런 것은 아니고, 뒤집어진 모양에서는 반대로 fmin이 못찾습니다.    구간 범위가 커질 경우, 함수에 적용하여 계산하다가 숫자 허용 한계를 벗어나서 overflow 가 나서 오류가 발생할 수도 있는 듯 합니다.    뒤에 점을 넣으니 경고 문구가 추가로 나오긴 했는데,  ⚠️ Questionable accuracy.   When applicable, try using graphical methods to verify the results. 그래도 실망이네요.    * 믿음직한 녀석은 아닌 듯 하니, 주의 표시 ⚠️가 나오든 안나오든, 사용에 주의하시기 바랍니다. 가급적이면 그래프로 검증해 보시는게 좋겠습니다.  2025 10.26 예시 8-1 : 분수식 solve시 오류 예시, 분모에 들어간 X³을 X로 치환해 해결? https://allcalc.org/56074 2025 10.25 fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면?       - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음.  - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐.  2025 10.24
    글쓴이의 서명작성글 감추기 

    댓글3

    • Profile 0
      세상의모든계산기
      2024.10.19 - 14:41 2015.10.23 - 22:59 #8986

      ※ 행렬의 입력 & 계산 - 확장 라이브러리 Matrix Library https://allcalc.org/1843 사용하면...


      10-23-2015 Image003.jpg

      ㄴ 문제의 행렬식 입력 

      ㄴ 라이브러리 단축키 지정 (안해도 되는데 안하면 더 복잡하니까...)

       

      10-23-2015 Image004.jpg

      ㄴ 역행렬을 통한 풀이 (참조 확인용)

       

      10-23-2015 Image005.jpg

      ㄴ i번째 열을 각각 m_c로 치환

       

      10-23-2015 Image006.jpg

      ㄴ 각각의 치환된 행렬의 Det(=행렬식)

       

      10-23-2015 Image007.jpg

      ㄴ 여인수 전개를 해 볼 경우

       

      10-23-2015 Image008.jpg

      ㄴ 최종 결과의 계산

      Attached file
      10-23-2015 Image003.jpg 24.9KB 139 10-23-2015 Image004.jpg 10.7KB 121 10-23-2015 Image005.jpg 20.7KB 130 10-23-2015 Image006.jpg 14.1KB 123 10-23-2015 Image007.jpg 18.8KB 129 10-23-2015 Image008.jpg 15.2KB 124
      댓글
    • Profile 0
      세상의모든계산기
      2024.10.19 - 14:44 2015.10.29 - 09:26 #9400

      행렬 원소가 복소수인 경우에는?


      이 공식은 계수가 복소수인 경우에도 성립하기 때문에,
      복소수 행렬 및 복소수 연립방정식이 불가능한 계산기에서도 이 공식을 이용하여

      프로그램을 짤 수만 있다면 복소수 해를 구할 수 있습니다. (fx-5800P, EL-9900 등)

       

      리스트 기능 및 공식 저장 기능이 없는 fx-570 급의 계산기로는

      이 방법을 이용해 직접 계산하는 것이 상당히 어렵다고 보시는게 좋겠습니다. 

      댓글
    • Profile 0
      세상의모든계산기
      2024.09.30 - 12:33 2024.09.30 - 12:32 #48581

      크래머의 규칙(Cramer’s Rule)은 연립 선형 방정식의 해를 구하는 방법 중 하나로, 몇 가지 중요한 의미와 특성을 가집니다:


      1. 선형 대수의 기초 개념: 크래머의 규칙은 행렬, 행렬식(determinant), 선형 변환 등 선형 대수의 기본 개념을 활용합니다. 이는 학생들에게 선형 대수의 기초를 이해하는 데 도움을 줍니다.

      2. 해의 존재 조건: 크래머의 규칙은 계수 행렬의 행렬식이 0이 아닐 때 유효합니다. 이는 해가 존재하고 유일하다는 것을 의미합니다. 만약 행렬식이 0이면 해가 존재하지 않거나 무한히 많다는 것을 나타냅니다.

      3. 해의 표현: 크래머의 규칙을 통해 각 변수의 해를 행렬식의 비율로 표현할 수 있습니다. 이는 수학적으로 매우 간결한 형태로 해를 도출할 수 있게 해줍니다.

      4. 공간적 해석: 크래머의 규칙은 기하학적으로도 해석될 수 있습니다. 3차원에서 세 개의 평면이 만나는 점을 찾아내는 과정으로 생각할 수 있으며, 이 점이 연립 방정식의 해가 됩니다.

      5. 컴퓨터 과학 및 공학적 응용: 크래머의 규칙은 컴퓨터 과학과 공학에서 시스템의 해를 찾는 데 사용됩니다. 특히, 작은 시스템에서는 직접 계산으로도 효율적입니다.

      6. 교육적 도구: 크래머의 규칙은 학생들이 선형 방정식의 해를 구하는 방법을 배우는 데 유용한 도구로, 다양한 문제를 해결하는 데 사용될 수 있습니다.

      7. 해의 정수성: 계수 행렬과 상수 벡터가 정수로 이루어져 있다면, 크래머의 규칙을 통해 얻은 해도 정수가 될 수 있는 가능성이 있습니다.

      이와 같은 점에서 크래머의 규칙은 수학적 사고를 발전시키고, 연립 방정식의 해를 효과적으로 찾는 방법으로 널리 사용됩니다.

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    3
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.