• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
      • 세상의 모든 계산기  
        • 자유(질문) 게시판  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학
    • 고정점 반복법, Fixed Point Iteration (비선형 방정식의 해를 찾는 방법)

    • Profile
      • 세상의모든계산기
        *.40.137.167
      • 2024.10.14 - 18:25 2024.10.14 - 13:39  352  2

    시행착오법을 통해 비선형 방정식의 해를 찾는 방법은 여러 가지가 있으며,

    그 중 하나가 "고정점 반복법" (Fixed Point Iteration)입니다. 

    image.png

    고정점 반복법 (Fixed Point Iteration)

     

    - 정의: 함수 \( f(D) = 0 \)의 해를 구하기 위해, 반복적으로 특정 형식의 함수 \( g(D) \)를 설정하여 \( D_{\text{new}} = g(D) \)의 형태로 업데이트하는 방법입니다.
    - 용도: 비선형 방정식, 유체 유동 해석, 공학적 문제 등 다양한 분야에서 해를 찾기 위해 사용됩니다.

     

    기타 관련 방법

     

    - 뉴턴-랩슨 방법 (Newton-Raphson Method):

      - 기울기를 이용하여 해를 찾아가는 방법으로, 일반적으로 더 빠른 수렴 속도를 제공합니다. 하지만 초기값에 대한 의존성이 큽니다.

    - 바이섹션 방법 (Bisection Method):

      - 함수의 값을 이용하여 중간값을 반복적으로 좁혀가는 방법입니다. 안정적이지만 수렴 속도는 상대적으로 느립니다.

    - 이분법 (Secant Method):

      - 두 점의 기울기를 이용해 해를 찾는 방법으로, 뉴턴-랩슨 방법의 대안으로 사용할 수 있습니다.

     

    각 방법은 특정 상황에서의 장단점이 있으므로 문제에 맞는 방법을 선택하는 것이 중요합니다.

     


     

    고정점 반복법의 예시 (2차방정식)

     

     

    2차 방정식 예제로 주어진 방정식이 다음과 같다고 가정하겠습니다:

    \[
    x^2 - 3x - 4 = 0
    \]

    이 방정식을 고정점 형태로 변형하여 해결해 보겠습니다.

     

    1. 방정식 변형

     

    방정식을 고정점 형태로 변형하려면 \( x \)에 대해 다시 정리해야 합니다. 예를 들어, 위의 방정식에서 \( x \)에 대한 식으로 바꿉니다:

    \[
    x = \frac{3x + 4}{x} = 3 + \frac{4}{x}
    \]

     

    이제 고정점 함수 \( g(x) \)를 정의할 수 있습니다:

    \[
    g(x) = 3 + \frac{4}{x}
    \]

     

    2. 초기값 설정

     

    고정점 반복법을 시작하기 위해 초기값을 설정합니다. 예를 들어, \( x_0 = 5 \)로 시작하겠습니다.

     

    3. 반복 계산

     

    이제 반복적으로 \( x \) 값을 업데이트합니다:

    \[
    x_{\text{new}} = g(x)
    \]

    1. 첫 번째 반복:
       \[
       x_1 = g(x_0) = 3 + \frac{4}{5} = 3 + 0.8 = 3.8
       \]

    2. 두 번째 반복:
       \[
       x_2 = g(x_1) = 3 + \frac{4}{3.8} \approx 3 + 1.0526 \approx 4.0526
       \]

    3. 세 번째 반복:
       \[
       x_3 = g(x_2) = 3 + \frac{4}{4.0526} \approx 3 + 0.9875 \approx 3.9875
       \]

    4. 네 번째 반복:
       \[
       x_4 = g(x_3) = 3 + \frac{4}{3.9875} \approx 3 + 1.0031 \approx 4.0031
       \]

    이런 식으로 계속 반복하여 \( x_n \)이 수렴할 때까지 진행합니다.

     

    4. 수렴 확인

     

    반복을 계속 진행하다 보면, \( x \) 값이 안정화되어 수렴하게 됩니다.

    예를 들어, 수렴 조건으로 \( |x_{\text{new}} - x_{\text{old}}| < \epsilon \) (여기서 \( \epsilon \)은 설정한 허용 오차) 를 사용할 수 있습니다.

     

    * g(x) 함수에 따라 수렴하지 않고 발산할 수도 있습니다. 

    수렴 조건:

    • |g'(x)| < 1 인 구간에서 수렴이 보장됩니다.
    • 이는 연속 반복에서 점들이 서로 가까워짐을 의미합니다.
    0
    0
    Attached file
    image.png 6.4KB 16
    이 게시물을..
    • 세상의모든계산기 세상의모든계산기 Lv. 25

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

     댓글 2

      • Profile
      • 세상의모든계산기 (*.40.137.167) 2024.10.14 13:40 #comment_49854

        TI-nspire 에서 구현


        image.png

         

        그래프로 확인

        image.png

        Attached file
        image.png 47.4KB / 9 image.png 47.9KB / 10 fixed_point_iteration.tns 5.2KB / 10
        0
        댓글
      • Profile
      • 세상의모든계산기 (*.40.137.167) 2024.10.14 13:49 #comment_49863

        g(x) 형식은 여러가지가 될 수 있습니다.


        이번엔 x = g(x) = 'x의 2차식' 꼴로 설정해 보겠습니다. 

        image.png

        수렴하긴 했는데... x=4 를 구하고 싶었지만, x=-1이 구해졌습니다. 

        그렇다고 x0=5 으로 시작하면 발산해버리고 맙니다. 

         

        x=4가 구해지지 않는 것은 그래프 모양으로 확인할 수 있습니다. 

        image.png

        앞서 보았던 분수함수와 달리 2차함수는 g(x) 값이 y=x 의 아래 있기 때문에 x가 더 작은 값으로 이동해 갑니다. 

         

        따라서

         

        g(x)|x<-1 는 -1로 

        g(x)|-1<x<4 는 -1로 

        g(x)|4<x ∞ 로 이동하게 되어

        x=4 로 수렴하지는 못합니다. 

         

        Attached file
        image.png 51.2KB / 9 image.png 52.2KB / 9
        0
        댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • 목록 목록
    • 목록
    2
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.