• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 회귀 분석 Regression Analysis

    • Profile
      • 세상의모든계산기
      • 2024.10.17 - 12:41 2016.04.07 - 09:32 1105 1

    image.png

     

    회귀 분석(Regression Analysis)은 주어진 데이터에서 종속 변수와 독립 변수 간의 관계를 수학적으로 모델링하는 기법으로, 데이터의 패턴을 이해하고 예측하는 데 사용됩니다.

    기본적인 목적은 관찰된 데이터를 기반으로 추정된 모델을 통해 예측하거나, 변수 간의 관계를 설명하는 것입니다.

    이를 통해, 과거 데이터를 분석하여 미래의 결과를 예측할 수 있는 매우 유용한 도구로 활용됩니다.

     

    주요 회귀 방법들

     

    1. 선형 회귀:


       가장 기본적이고 많이 사용되는 회귀 기법입니다. 선형 회귀는 데이터 포인트들이 직선으로 표현될 수 있는 상황에서 효과적입니다.

    수식은 보통 다음과 같은 형태로 주어집니다:  
       \[
       y = \beta_0 + \beta_1x + \epsilon
       \]
       여기서 \(y\)는 종속 변수, \(x\)는 독립 변수, \(\beta_0\)와 \(\beta_1\)는 회귀 계수, \(\epsilon\)은 오차 항입니다.

     

    이 방법은 독립 변수와 종속 변수 간의 직선적인 관계를 추정하는 데 적합하며, 데이터의 경향성을 분석하는 데 자주 사용됩니다.

     

    2. 다 회귀:


       선형 회귀의 확장판으로, 독립 변수와 종속 변수 간의 관계가 직선이 아니라 곡선으로 나타날 때 사용됩니다.

    이 경우 2차, 3차, 또는 그 이상의 다항식을 이용해 복잡한 곡선 형태의 관계를 모델링합니다.

    예를 들어, 2차 회귀는 다음과 같은 형태를 가집니다:  
       \[
       y = \beta_0 + \beta_1x + \beta_2x^2 + \epsilon
       \]

     

       다차원 데이터를 다루는 경우나 복잡한 패턴을 표현하는 데 유용합니다.

     

    3. 로그 회귀:


       종속 변수가 로그 함수로 표현되는 회귀 모델입니다.

    데이터가 지수적인 변화를 보일 때 이 방법을 사용하며, 로그 변환을 통해 데이터를 직선화한 후 선형 회귀를 적용할 수 있습니다.

    일반적으로 아래와 같은 형태의 수식을 가집니다:

    \[
    y = \beta_0 + \beta_1 \ln(x) + \epsilon
    \]
     

    로그 회귀는 데이터가 급격한 증가 또는 감소를 보일 때 그 관계를 잘 모델링합니다.

    예를 들어, 소득에 따른 소비의 증가나 기술 발전에 따른 생산성 증가 등에서 로그 변환을 적용해 예측할 수 있습니다.

     

    4. 지수 회귀:


       로그 회귀와 반대로, 지수적으로 증가하거나 감소하는 데이터를 모델링하는 회귀 방법입니다.

    지수 회귀의 수식은 다음과 같은 형태를 띕니다:

    \[
    y = \beta_0 e^{\beta_1 x} + \epsilon
    \]

     

    이 모델은 경제 성장률, 인구 증가율, 바이러스 확산 등과 같이 시간이 지남에 따라 변화 속도가 급격히 달라지는 데이터를 모델링하는 데 적합합니다.

    예를 들어, 초기에 완만하게 증가하다가 특정 시점부터 급격히 증가하는 데이터에 자주 사용됩니다.

     

    회귀 분석의 목적

     

    회귀 분석은 크게 두 가지 주요 목적을 가지고 있습니다.

    1. 예측: 회귀 모델을 통해 새롭게 입력된 독립 변수에 대한 종속 변수의 값을 예측할 수 있습니다. 예를 들어, 경제 분야에서 과거 데이터를 이용해 주식 시장의 미래 가격을 예측하거나, 기상 데이터로부터 날씨를 예측하는 데 사용할 수 있습니다.

    2. 설명: 회귀 분석은 데이터의 변수 간 관계를 이해하는 데도 중요한 도구입니다. 독립 변수가 종속 변수에 미치는 영향을 분석함으로써, 어떤 요인이 결과에 가장 크게 기여하는지 파악할 수 있습니다. 예를 들어, 마케팅 데이터에서 고객의 구매 행동에 가장 영향을 미치는 요소를 찾아낼 수 있습니다.

     

    회귀 분석의 한계

     

    회귀 분석은 매우 강력한 도구지만, 몇 가지 한계가 존재합니다.

     

    첫째, 상관관계와 인과관계의 혼동입니다. 회귀 분석은 변수 간의 상관관계를 파악할 수 있지만, 그 상관관계가 인과관계라고 확신할 수는 없습니다.

    둘째, 다중공선성 문제로 인해 독립 변수들이 서로 강하게 상관되어 있을 때 모델의 정확성이 떨어질 수 있습니다.

    마지막으로, 오버피팅 문제도 주의해야 합니다. 모델이 너무 복잡해지면 학습 데이터에는 매우 잘 맞지만, 새로운 데이터에는 제대로 예측하지 못하는 경우가 발생할 수 있습니다.

     

    회귀 분석의 활용 분야

     

    회귀 분석은 경제학, 사회학, 생물학, 기계 학습 등 다양한 분야에서 활용됩니다.

    예를 들어, 경제학에서는 소비자 지출과 소득 간의 관계를 분석하거나, 기계 학습에서는 데이터의 패턴을 학습해 예측 모델을 만들 때 사용됩니다.

     

     

    링크:


    - [위키 (한글)](https://ko.wikipedia.org/wiki/%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D)
    - [위키 (영어)](https://en.wikipedia.org/wiki/Regression_analysis)
    - [블로그](http://socialinnovation.tistory.com/145)

     

    Attached file
    image.png 3.1KB 21
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    AGI 자기 거버넌스 구조와 인간-AGI 관계 모델 (written by GEMINI & GPT) 51 1 2026 01.30   AI 시대, '기본소득'을 넘어 '기여소득'으로: 새로운 사회 계약을 향한 제언 - Written by Gemini 112 1 2026 01.28 쌀집계산기로 선형 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 122 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 189 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 537 10 2025 12.28

    세상의모든계산기 님의 최근 댓글

    엑셀 파일로 만드니 전체 160~200MB 정도 나옵니다. 읽고 / 저장하는데 한참 걸리네요. 컴 사양을 좀 탈 것 같습니다. 100만 개 단위로 끊어서 20MB 정도로 분할해 저장하는 편이 오히려 속 편할 것 같습니다. 2026 02.10 엑셀 / 행의 최대 개수, 열의 최대 개수, 셀의 최대 개수  엑셀의 행 개수 제한은 파일 형식에 따라 다르며, 최신 .xlsx 파일 형식은 시트당 최대 1,048,576행까지 지원하지만, 구형 .xls 파일은 65,536행으로 제한됩니다.   따라서 대용량 데이터를 다룰 때는 반드시 최신 파일 형식(.)으로 저장해야 하며, 행과 열의 총 수는 1,048,576행 x 16,384열이 최대입니다. 주요 행 개수 제한 사항: 최신 파일 형식 (.xlsx, .xlsm, .xlsb 등): 시트당 1,048,576행 (2^20). 구형 파일 형식 (.xls): 시트당 65,536행 (2^16). 그 외 알아두면 좋은 점: 최대 행 수: 1,048,576행 (100만여개) 최대 열 수: 16,384열 (XFD)  대용량 데이터 처리: 65,536행을 초과하는 데이터를 다루려면 반드시 .xlsx 형식으로 저장하고 사용해야 합니다. 문제 해결: 데이터가 많아 엑셀이 멈추거나 오류가 발생하면, 불필요한 빈 행을 정리하거나 Inquire 추가 기능을 활용하여 파일을 최적화할 수 있습니다. 2026 02.10 [일반계산기] 매출액 / 원가 / 마진율(=이익율)의 계산. https://allcalc.org/20806 2026 02.08 V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다.  이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다.   2026 02.04 ​ A) 1*3*5*7*9 = 계산 945 ​ B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 ​ C) - 1 ÷ 5 + 1 = 1.0003348104468 ​ D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) ​ 참 값 = 3.9362834270354... 2026 02.04
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.10.17 - 12:11 2024.10.17 - 12:10 #50131

      최소 자승법 (OLS, Ordinary Least Squares Method)


      https://allcalc.org/9078

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.