• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 회귀 분석 Regression Analysis

    • Profile
      • 세상의모든계산기
      • 2024.10.17 - 12:41 2016.04.07 - 09:32 914 1

    image.png

     

    회귀 분석(Regression Analysis)은 주어진 데이터에서 종속 변수와 독립 변수 간의 관계를 수학적으로 모델링하는 기법으로, 데이터의 패턴을 이해하고 예측하는 데 사용됩니다.

    기본적인 목적은 관찰된 데이터를 기반으로 추정된 모델을 통해 예측하거나, 변수 간의 관계를 설명하는 것입니다.

    이를 통해, 과거 데이터를 분석하여 미래의 결과를 예측할 수 있는 매우 유용한 도구로 활용됩니다.

     

    주요 회귀 방법들

     

    1. 선형 회귀:


       가장 기본적이고 많이 사용되는 회귀 기법입니다. 선형 회귀는 데이터 포인트들이 직선으로 표현될 수 있는 상황에서 효과적입니다.

    수식은 보통 다음과 같은 형태로 주어집니다:  
       \[
       y = \beta_0 + \beta_1x + \epsilon
       \]
       여기서 \(y\)는 종속 변수, \(x\)는 독립 변수, \(\beta_0\)와 \(\beta_1\)는 회귀 계수, \(\epsilon\)은 오차 항입니다.

     

    이 방법은 독립 변수와 종속 변수 간의 직선적인 관계를 추정하는 데 적합하며, 데이터의 경향성을 분석하는 데 자주 사용됩니다.

     

    2. 다 회귀:


       선형 회귀의 확장판으로, 독립 변수와 종속 변수 간의 관계가 직선이 아니라 곡선으로 나타날 때 사용됩니다.

    이 경우 2차, 3차, 또는 그 이상의 다항식을 이용해 복잡한 곡선 형태의 관계를 모델링합니다.

    예를 들어, 2차 회귀는 다음과 같은 형태를 가집니다:  
       \[
       y = \beta_0 + \beta_1x + \beta_2x^2 + \epsilon
       \]

     

       다차원 데이터를 다루는 경우나 복잡한 패턴을 표현하는 데 유용합니다.

     

    3. 로그 회귀:


       종속 변수가 로그 함수로 표현되는 회귀 모델입니다.

    데이터가 지수적인 변화를 보일 때 이 방법을 사용하며, 로그 변환을 통해 데이터를 직선화한 후 선형 회귀를 적용할 수 있습니다.

    일반적으로 아래와 같은 형태의 수식을 가집니다:

    \[
    y = \beta_0 + \beta_1 \ln(x) + \epsilon
    \]
     

    로그 회귀는 데이터가 급격한 증가 또는 감소를 보일 때 그 관계를 잘 모델링합니다.

    예를 들어, 소득에 따른 소비의 증가나 기술 발전에 따른 생산성 증가 등에서 로그 변환을 적용해 예측할 수 있습니다.

     

    4. 지수 회귀:


       로그 회귀와 반대로, 지수적으로 증가하거나 감소하는 데이터를 모델링하는 회귀 방법입니다.

    지수 회귀의 수식은 다음과 같은 형태를 띕니다:

    \[
    y = \beta_0 e^{\beta_1 x} + \epsilon
    \]

     

    이 모델은 경제 성장률, 인구 증가율, 바이러스 확산 등과 같이 시간이 지남에 따라 변화 속도가 급격히 달라지는 데이터를 모델링하는 데 적합합니다.

    예를 들어, 초기에 완만하게 증가하다가 특정 시점부터 급격히 증가하는 데이터에 자주 사용됩니다.

     

    회귀 분석의 목적

     

    회귀 분석은 크게 두 가지 주요 목적을 가지고 있습니다.

    1. 예측: 회귀 모델을 통해 새롭게 입력된 독립 변수에 대한 종속 변수의 값을 예측할 수 있습니다. 예를 들어, 경제 분야에서 과거 데이터를 이용해 주식 시장의 미래 가격을 예측하거나, 기상 데이터로부터 날씨를 예측하는 데 사용할 수 있습니다.

    2. 설명: 회귀 분석은 데이터의 변수 간 관계를 이해하는 데도 중요한 도구입니다. 독립 변수가 종속 변수에 미치는 영향을 분석함으로써, 어떤 요인이 결과에 가장 크게 기여하는지 파악할 수 있습니다. 예를 들어, 마케팅 데이터에서 고객의 구매 행동에 가장 영향을 미치는 요소를 찾아낼 수 있습니다.

     

    회귀 분석의 한계

     

    회귀 분석은 매우 강력한 도구지만, 몇 가지 한계가 존재합니다.

     

    첫째, 상관관계와 인과관계의 혼동입니다. 회귀 분석은 변수 간의 상관관계를 파악할 수 있지만, 그 상관관계가 인과관계라고 확신할 수는 없습니다.

    둘째, 다중공선성 문제로 인해 독립 변수들이 서로 강하게 상관되어 있을 때 모델의 정확성이 떨어질 수 있습니다.

    마지막으로, 오버피팅 문제도 주의해야 합니다. 모델이 너무 복잡해지면 학습 데이터에는 매우 잘 맞지만, 새로운 데이터에는 제대로 예측하지 못하는 경우가 발생할 수 있습니다.

     

    회귀 분석의 활용 분야

     

    회귀 분석은 경제학, 사회학, 생물학, 기계 학습 등 다양한 분야에서 활용됩니다.

    예를 들어, 경제학에서는 소비자 지출과 소득 간의 관계를 분석하거나, 기계 학습에서는 데이터의 패턴을 학습해 예측 모델을 만들 때 사용됩니다.

     

     

    링크:


    - [위키 (한글)](https://ko.wikipedia.org/wiki/%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D)
    - [위키 (영어)](https://en.wikipedia.org/wiki/Regression_analysis)
    - [블로그](http://socialinnovation.tistory.com/145)

     

    Attached file
    image.png 3.1KB 14
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    [HP Prime] Solve 함수 16 1 2025 10.20 세모계 사이트에서 파일 업로드 에러 (Type 7) 발생할 수 있습니다. 53 2025 10.13 언어의 유형과 만남: 고립어, 교착어, 그리고 한본어 현상에 대한 탐구 (written by Gemini) 139 1 2025 10.09 함수 Completesquare, 완전제곱식 변환 기능 93 1 2025 10.08 iptime 공유기 (AX2004T), 유선 핑 테스트 결과 (Ping Test) 424 11 2025 09.24

    세상의모든계산기 님의 최근 댓글

    tns 파일 첨부 sol_num_vs_exact.tns 2025 10.21 검증하면  1번 식을 x에 대해 정리하고,  → 그 x 값을 2번 식에 대입해 넣으면   → 그 결과로 x는 사라지고 y에 대한 식이 되니, y에 대해 정리하면 참값 y를 얻음.    얻은 y의 참값을 처음 x에 대해 정리한 1번식에 대입하면 참 값 x를 얻음.    구해진 참값의 근사값을 구하면    x=73.049507058547 and y=23.747548955927     어떤 solve로 나온 근사값이든, 근사값으로는 원래의 식 모두를 만족시킬 수 없음. 2025 10.21 그렇다면 해의 참 값은? approx(exsol1)  x=73.049507058547 and y=23.747548955927 2025 10.21 각 결과값의 비교   x y {x} 73.049507058553 23.747548955926 {y} 73.049507058479 23.747548955927 {x=1,y=1} 73.049507058477 23.747548955927 approx() 전처리 73.049507058479 23.747548955926 linsolve 73.049507058478 23.747548955926 approx(참 해) 73.049507058547 23.747548955927   * 구해진 x값들은 차이가 비교적 큰데, y값들은 차이가 적은 편입니다.  2025 10.21 삼각함수로 구성된 방정식을 계산기가 소화하지 못하는 건가요? 원래 계산기 solve 함수가 삼각함수와 궁합이 나쁘지만,  이 경우의 삼각함수는 함수 내부에 변수가 들어가지 않기 때문에 함수라서 처리가 어려운 것이 아닙니다.    삼각함수 내부에 변수가 아닌 상수가 들어갔기 때문에 결과값도 상수일 뿐인데,  numeric 한 상수로 처리하지 않고 symbolic 한 상수로 처리해 문제가 발생한 듯 합니다.  2025 10.21
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.10.17 - 12:11 2024.10.17 - 12:10 #50131

      최소 자승법 (OLS, Ordinary Least Squares Method)


      https://allcalc.org/9078

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.