• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 회귀 분석 Regression Analysis

    • Profile
      • 세상의모든계산기
      • 2024.10.17 - 12:41 2016.04.07 - 09:32 944 1

    image.png

     

    회귀 분석(Regression Analysis)은 주어진 데이터에서 종속 변수와 독립 변수 간의 관계를 수학적으로 모델링하는 기법으로, 데이터의 패턴을 이해하고 예측하는 데 사용됩니다.

    기본적인 목적은 관찰된 데이터를 기반으로 추정된 모델을 통해 예측하거나, 변수 간의 관계를 설명하는 것입니다.

    이를 통해, 과거 데이터를 분석하여 미래의 결과를 예측할 수 있는 매우 유용한 도구로 활용됩니다.

     

    주요 회귀 방법들

     

    1. 선형 회귀:


       가장 기본적이고 많이 사용되는 회귀 기법입니다. 선형 회귀는 데이터 포인트들이 직선으로 표현될 수 있는 상황에서 효과적입니다.

    수식은 보통 다음과 같은 형태로 주어집니다:  
       \[
       y = \beta_0 + \beta_1x + \epsilon
       \]
       여기서 \(y\)는 종속 변수, \(x\)는 독립 변수, \(\beta_0\)와 \(\beta_1\)는 회귀 계수, \(\epsilon\)은 오차 항입니다.

     

    이 방법은 독립 변수와 종속 변수 간의 직선적인 관계를 추정하는 데 적합하며, 데이터의 경향성을 분석하는 데 자주 사용됩니다.

     

    2. 다 회귀:


       선형 회귀의 확장판으로, 독립 변수와 종속 변수 간의 관계가 직선이 아니라 곡선으로 나타날 때 사용됩니다.

    이 경우 2차, 3차, 또는 그 이상의 다항식을 이용해 복잡한 곡선 형태의 관계를 모델링합니다.

    예를 들어, 2차 회귀는 다음과 같은 형태를 가집니다:  
       \[
       y = \beta_0 + \beta_1x + \beta_2x^2 + \epsilon
       \]

     

       다차원 데이터를 다루는 경우나 복잡한 패턴을 표현하는 데 유용합니다.

     

    3. 로그 회귀:


       종속 변수가 로그 함수로 표현되는 회귀 모델입니다.

    데이터가 지수적인 변화를 보일 때 이 방법을 사용하며, 로그 변환을 통해 데이터를 직선화한 후 선형 회귀를 적용할 수 있습니다.

    일반적으로 아래와 같은 형태의 수식을 가집니다:

    \[
    y = \beta_0 + \beta_1 \ln(x) + \epsilon
    \]
     

    로그 회귀는 데이터가 급격한 증가 또는 감소를 보일 때 그 관계를 잘 모델링합니다.

    예를 들어, 소득에 따른 소비의 증가나 기술 발전에 따른 생산성 증가 등에서 로그 변환을 적용해 예측할 수 있습니다.

     

    4. 지수 회귀:


       로그 회귀와 반대로, 지수적으로 증가하거나 감소하는 데이터를 모델링하는 회귀 방법입니다.

    지수 회귀의 수식은 다음과 같은 형태를 띕니다:

    \[
    y = \beta_0 e^{\beta_1 x} + \epsilon
    \]

     

    이 모델은 경제 성장률, 인구 증가율, 바이러스 확산 등과 같이 시간이 지남에 따라 변화 속도가 급격히 달라지는 데이터를 모델링하는 데 적합합니다.

    예를 들어, 초기에 완만하게 증가하다가 특정 시점부터 급격히 증가하는 데이터에 자주 사용됩니다.

     

    회귀 분석의 목적

     

    회귀 분석은 크게 두 가지 주요 목적을 가지고 있습니다.

    1. 예측: 회귀 모델을 통해 새롭게 입력된 독립 변수에 대한 종속 변수의 값을 예측할 수 있습니다. 예를 들어, 경제 분야에서 과거 데이터를 이용해 주식 시장의 미래 가격을 예측하거나, 기상 데이터로부터 날씨를 예측하는 데 사용할 수 있습니다.

    2. 설명: 회귀 분석은 데이터의 변수 간 관계를 이해하는 데도 중요한 도구입니다. 독립 변수가 종속 변수에 미치는 영향을 분석함으로써, 어떤 요인이 결과에 가장 크게 기여하는지 파악할 수 있습니다. 예를 들어, 마케팅 데이터에서 고객의 구매 행동에 가장 영향을 미치는 요소를 찾아낼 수 있습니다.

     

    회귀 분석의 한계

     

    회귀 분석은 매우 강력한 도구지만, 몇 가지 한계가 존재합니다.

     

    첫째, 상관관계와 인과관계의 혼동입니다. 회귀 분석은 변수 간의 상관관계를 파악할 수 있지만, 그 상관관계가 인과관계라고 확신할 수는 없습니다.

    둘째, 다중공선성 문제로 인해 독립 변수들이 서로 강하게 상관되어 있을 때 모델의 정확성이 떨어질 수 있습니다.

    마지막으로, 오버피팅 문제도 주의해야 합니다. 모델이 너무 복잡해지면 학습 데이터에는 매우 잘 맞지만, 새로운 데이터에는 제대로 예측하지 못하는 경우가 발생할 수 있습니다.

     

    회귀 분석의 활용 분야

     

    회귀 분석은 경제학, 사회학, 생물학, 기계 학습 등 다양한 분야에서 활용됩니다.

    예를 들어, 경제학에서는 소비자 지출과 소득 간의 관계를 분석하거나, 기계 학습에서는 데이터의 패턴을 학습해 예측 모델을 만들 때 사용됩니다.

     

     

    링크:


    - [위키 (한글)](https://ko.wikipedia.org/wiki/%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D)
    - [위키 (영어)](https://en.wikipedia.org/wiki/Regression_analysis)
    - [블로그](http://socialinnovation.tistory.com/145)

     

    Attached file
    image.png 3.1KB 14
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    미래 AI의 세 번째 임계점: '자율 AI 에이전트'와 '효율성'의 만남 13 2025 11.06 AI 발전의 두 번째 임계점: LLM과 창발적 능력의 시대. written by gemini-2.5 12 2025 11.06 AI 발전의 첫 번째 임계점: GPU와 딥러닝 혁명. written by gemini-2.5 13 2025 11.06 적록 색약 보정 렌즈(안경) 를 컴퓨터로 시뮬레이션 해본다면? 95 7 2025 11.04 [ticalc.org 펌] Gamma & Zeta function +more. 감마 제타 함수 외 126 2 2025 10.29

    세상의모든계산기 님의 최근 댓글

    HP-39gII 에 ExistOS 설치하기 https://allcalc.org/38526   2025 11.07   1. 왜 검은색이 아닌 다른 색으로 보일까? (제공된 LUT 필터)     제가 제공해 드린 magenta_lens.cube LUT 필터는 540~560nm(녹색-노란색) 파장대의 색상을 '완전히 제거(검은색으로   만듦)'하는 대신, '다른 색상으로 왜곡/변환'하도록 설계되었습니다.    * 원리: LUT(Look-Up Table)는 특정 입력 색상(Input RGB)을 미리 정해진 다른 출력 색상(Output RGB)으로 매핑하는      테이블입니다. 이 LUT는 540~560nm에 해당하는 RGB 값들이 들어오면, 검은색(0, 0, 0)이 아닌, 매우 어둡거나 채도가      낮은 특정 색(예: 어두운 올리브색, 갈색 등)으로 변환하라고 지시합니다.    * 의도:        * 현실적인 물리 필터 시뮬레이션: 실제 고가의 색약 보정 안경도 특정 파장을 100% 완벽하게 차단하지는 못합니다.          빛의 일부를 흡수하고 일부는 통과시키거나 변환하는데, 이 LUT는 그러한 현실 세계의 필터 효과를 더 비슷하게          흉내 냈을 수 있습니다.        * 시각적 정보 유지: 특정 색을 완전히 검게 만들면 그 부분의 형태나 질감 정보가 완전히 사라집니다. 하지만 다른          어두운 색으로 대체하면, 색상 정보는 왜곡되더라도 밝기나 형태 정보는 어느 정도 유지되어 전체적인 이미지가 덜           어색하게 보일 수 있습니다.   결론적으로, 스펙트럼 그림에서 해당 대역의 색이 갑자기 '다른 색으로 툭 바뀌는' 현상은, LUT 필터가 "이 파장대의   색은 앞으로 이 색으로 표시해!"라고 강제적으로 지시한 결과이며, 이것이 바로 이 필터가 작동하는 방식 그   자체입니다.     2. 왜 'Color Vision Helper' 앱은 검은색으로 보일까?     비교하신 'Color Vision Helper' 앱은 노치 필터의 원리를 더 이상적(Ideal)이고 교과서적으로 구현했을 가능성이   높습니다.    * 원리: "L-콘과 M-콘의 신호가 겹치는 540~560nm 파장의 빛은 '완전히 차단'되어야 한다"는 개념에 매우 충실한      방식입니다.    * 구현: 따라서 해당 파장에 해당하는 색상 정보가 들어오면, 어떠한 타협도 없이 그냥 '검은색(RGB 0, 0, 0)'으로      처리해 버립니다. 이는 "이 파장의 빛은 존재하지 않는 것으로 처리하겠다"는 가장 강력하고 직접적인 표현입니다. 2025 11.06 적용사례 4 - 파장 스펙트럼 https://news.samsungdisplay.com/26683   ㄴ (좌) 연속되는 그라데이션 ➡️ (우) 540 이하 | 구분되는 층(색) | 560 이상    - 겹치는 부분, 즉 540~560 nm 에서 색상이 차단? 변형? 된 것을 확인할 수 있음. 그럼 폰에서 Color Vision Helper 앱으로 보면? ㄴ 540~560 nm 대역이 검은 띠로 표시됨. 완전 차단됨을 의미   2025 11.05 빨간 셀로판지로도 이시하라 테스트 같은 숫자 구분에서는 유사한 효과를 낼 수 있다고 합니다. 색상이 다양하다면 빨강이나, 노랑, 주황 등도 테스트해보면 재밌겠네요. 2025 11.05 안드로이드 앱 - "Color Vision Helper" 다운받아 본문 내용을 카메라로 찍어 보니,  본문 프로그램에서는 애매하게 보이던 부분에서도 구분이 완전 확실하게 되네요.    숫자 구분 능력 & 편의성 면에서 압도적이라고 할 수 있겠습니다.    2025 11.05
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.10.17 - 12:11 2024.10.17 - 12:10 #50131

      최소 자승법 (OLS, Ordinary Least Squares Method)


      https://allcalc.org/9078

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.