푸리에 급수 테이블 , 푸리에 변환 테이블, Fourier Series Table, Fourier Transform Table
출처 : https://ena.etsmtl.ca/pluginfile.php/137982/mod_resource/content/8/Fourier-table.pdf


출처 : https://en.wikipedia.org/wiki/Fourier_transform
Functional relationships, one-dimensional
The Fourier transforms in this table may be found in [Erdélyi 1954] or [Kammler 2000, appendix].
| Function | Fourier transform unitary, ordinary frequency |
Fourier transform unitary, angular frequency |
Fourier transform non-unitary, angular frequency |
Remarks | |
|---|---|---|---|---|---|
| \[f(x)\] | \[\begin{align} &\widehat{f}(\xi) \triangleq \widehat {f_1}(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}\] | \[\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_2}(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}\] | \[\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_3}(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}\] | Definitions | |
| 101 | \[a\, f(x) + b\, g(x)\] | \[a\, \widehat{f}(\xi) + b\, \widehat{g}(\xi)\] | \[a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\] | \[a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\] | Linearity |
| 102 | \[f(x - a)\] | \[e^{-i 2\pi \xi a} \widehat{f}(\xi)\] | \[e^{- i a \omega} \widehat{f}(\omega)\] | \[e^{- i a \omega} \widehat{f}(\omega)\] | Shift in time domain |
| 103 | \[f(x)e^{iax}\] | \[\widehat{f} \left(\xi - \frac{a}{2\pi}\right)\] | \[\widehat{f}(\omega - a)\] | \[\widehat{f}(\omega - a)\] | Shift in frequency domain, dual of 102 |
| 104 | \[f(a x)\] | \[\frac{1}{|a|} \widehat{f}\left( \frac{\xi}{a} \right)\] | \[\frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\] | \[\frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\] | Scaling in the time domain. If \[{{abs|a}}\] is large, then \[f(ax)\] is concentrated around 0 and \[\frac{1}{|a|}\hat{f} \left( \frac{\omega}{a} \right)\] spreads out and flattens. |
| 105 | \[\widehat {f_n}(x)\] | \[\widehat {f_1}(x) \ \stackrel{\mathcal{F}_1}{\longleftrightarrow}\ f(-\xi)\] | \[\widehat {f_2}(x) \ \stackrel{\mathcal{F}_2}{\longleftrightarrow}\ f(-\omega)\] | \[\widehat {f_3}(x) \ \stackrel{\mathcal{F}_3}{\longleftrightarrow}\ 2\pi f(-\omega)\] | The same transform is applied twice, but x replaces the frequency variable (ξ or ω) after the first transform. |
| 106 | \[\frac{d^n f(x)}{dx^n}\] | \[(i 2\pi \xi)^n \widehat{f}(\xi)\] | \[(i\omega)^n \widehat{f}(\omega)\] | \[(i\omega)^n \widehat{f}(\omega)\] | nth-order derivative. As \[f\] is a [[Schwartz space|Schwartz function]] |
| 106.5 | \[\int_{-\infty}^{x} f(\tau) d \tau\] | \[\frac{\widehat{f}(\xi)}{i 2 \pi \xi} + C \, \delta(\xi)\] | \[\frac{\widehat{f} (\omega)}{i\omega} + \sqrt{2 \pi} C \delta(\omega)\] | \[\frac{\widehat{f} (\omega)}{i\omega} + 2 \pi C \delta(\omega)\] | Integration.[1] Note: \[\delta\] is the [[Dirac delta function]] and \[C\] is the average ([[DC component|DC]]) value of \[f(x)\] such that \[\int_{-\infty}^\infty (f(x) - C) \, dx = 0\] |
| 107 | \[x^n f(x)\] | \[\left (\frac{i}{2\pi}\right)^n \frac{d^n \widehat{f}(\xi)}{d\xi^n}\] | \[i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}\] | \[i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}\] | This is the dual of 106 |
| 108 | \[(f * g)(x)\] | \[\widehat{f}(\xi) \widehat{g}(\xi)\] | \[\sqrt{2\pi}\ \widehat{f}(\omega) \widehat{g}(\omega)\] | \[\widehat{f}(\omega) \widehat{g}(\omega)\] | The notation \[f * g\] denotes the [[convolution]] of \[f\] and \[g\] — this rule is the [[convolution theorem]] |
| 109 | \[f(x) g(x)\] | \[\left(\widehat{f} * \widehat{g}\right)(\xi)\] | \[ \frac{1}{\sqrt{2\pi}} \left(\widehat{f} * \widehat{g}\right)(\omega) \] | \[\frac{1}{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\] | This is the dual of 108 |
| 110 | For \[f(x)\] purely real | \[\widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}\] | \[\widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\] | \[\widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\] | Hermitian symmetry. \[\overline{z}\] indicates the [[complex conjugate]]. |
| 113 | For \[f(x)\] purely imaginary | \[\widehat{f}(-\xi) = -\overline{\widehat{f}(\xi)}\] | \[\widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\] | \[\widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\] | \[\overline{z}\] indicates the [[complex conjugate]]. |
| 114 | \[\overline{f(x)}\] | \[\overline{\widehat{f}(-\xi)}\] | \[\overline{\widehat{f}(-\omega)}\] | \[\overline{\widehat{f}(-\omega)}\] | [[Complex conjugation]], generalization of 110 and 113 |
| 115 | \[f(x) \cos (a x)\] | \[\frac{\widehat{f}\left(\xi - \frac{a}{2\pi}\right)+\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2}\] | \[\frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\] | \[\frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\] | This follows from rules 101 and 103 using [[Euler's formula]]: \[\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.\] |
| 116 | \[f(x)\sin( ax)\] | \[\frac{\widehat{f}\left(\xi-\frac{a}{2\pi}\right)-\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2i}\] | \[\frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}\] | \[\frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}\] | This follows from 101 and 103 using [[Euler's formula]]: \[\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.\] |
[1] The Integration Property of the Fourier Transform
| Function | Fourier transform unitary, ordinary frequency |
Fourier transform unitary, angular frequency |
Fourier transform non-unitary, angular frequency |
Remarks | |
|---|---|---|---|---|---|
| \[ f(x) \] | \[ \begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align} \] | \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] | \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] | Definitions | |
| 301 | \[ 1 \] | \[ \delta(\xi) \] | \[ \sqrt{2\pi}\, \delta(\omega) \] | \[ 2\pi\delta(\omega) \] | The distribution \[ ''δ''(''ξ'') \] denotes the [[Dirac delta function]]. |
| 302 | \[ \delta(x) \] | \[ 1 \] | \[ \frac{1}{\sqrt{2\pi}} \] | \[ 1 \] | Dual of rule 301. |
| 303 | \[ e^{i a x} \] | \[ \delta\left(\xi - \frac{a}{2\pi}\right) \] | \[ \sqrt{2 \pi}\, \delta(\omega - a) \] | \[ 2 \pi\delta(\omega - a) \] | This follows from 103 and 301. |
| 304 | \[ \cos (a x) \] | \[ \frac{\delta\left(\xi - \frac{a}{2\pi}\right)+\delta\left(\xi+\frac{a}{2\pi}\right)}{2} \] | \[ \sqrt{2 \pi}\,\frac{\delta(\omega-a)+\delta(\omega+a)}{2} \] | \[ \pi\left(\delta(\omega-a)+\delta(\omega+a)\right) \] | This follows from rules 101 and 303 using [[Euler's formula]]: \[ \cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}. \] |
| 305 | \[ \sin( ax) \] | \[ \frac{\delta\left(\xi-\frac{a}{2\pi}\right)-\delta\left(\xi+\frac{a}{2\pi}\right)}{2i} \] | \[ \sqrt{2 \pi}\,\frac{\delta(\omega-a)-\delta(\omega+a)}{2i} \] | \[ -i\pi\bigl(\delta(\omega-a)-\delta(\omega+a)\bigr) \] | This follows from 101 and 303 using \[ \sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}. \] |
| 306 | \[ \cos \left( a x^2 \right) \] | \[ \sqrt{\frac{\pi}{a}} \cos \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) \] | \[ \frac{1}{\sqrt{2 a}} \cos \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) \] | \[ \sqrt{\frac{\pi}{a}} \cos \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) \] | This follows from 101 and 207 using \[ \cos(a x^2) = \frac{e^{i a x^2} + e^{-i a x^2}}{2}. \] |
| 307 | \[ \sin \left( a x^2 \right) \] | \[ - \sqrt{\frac{\pi}{a}} \sin \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) \] | \[ \frac{-1}{\sqrt{2 a}} \sin \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) \] | \[ -\sqrt{\frac{\pi}{a}}\sin \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) \] | This follows from 101 and 207 using \[ \sin(a x^2) = \frac{e^{i a x^2} - e^{-i a x^2}}{2i}. \] |
| 308 | \[ e^{-\pi i\alpha x^2} \] | \[ \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\pi \xi^2}{\alpha}} \] | \[ \frac{1}{\sqrt{2\pi \alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}} \] | \[ \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}} \] | Here it is assumed \[ \alpha \] is real. For the case that alpha is complex see table entry 206 above. |
| 309 | \[ x^n \] | \[ \left(\frac{i}{2\pi}\right)^n \delta^{(n)} (\xi) \] | \[ i^n \sqrt{2\pi} \delta^{(n)} (\omega) \] | \[ 2\pi i^n\delta^{(n)} (\omega) \] | Here, \[ n \] is a [[natural number]] and \[ ''δ''{{isup|(''n'')}}\left(\xi\right) \] is the \[ n \]th distribution derivative of the Dirac delta function. This rule follows from rules 107 and 301. Combining this rule with 101, we can transform all [[polynomial]]s. |
| 310 | \[ \delta^{(n)}(x) \] | \[ (i 2\pi \xi)^n \] | \[ \frac{(i\omega)^n}{\sqrt{2\pi}} \] | \[ (i\omega)^n \] | Dual of rule 309. \[ ''δ''{{isup|(''n'')}}\left(\xi\right) \] is the \[ n \]th distribution derivative of the Dirac delta function. This rule follows from 106 and 302. |
| 311 | \[ \frac{1}{x} \] | \[ -i\pi\sgn(\xi) \] | \[ -i\sqrt{\frac{\pi}{2}}\sgn(\omega) \] | \[ -i\pi\sgn(\omega) \] | Here \[ sgn(\xi) \] is the [[sign function]]. Note that \[ \frac{1}{x} \] is not a distribution. It is necessary to use the [[Cauchy principal value]] when testing against [[Schwartz functions]]. This rule is useful in studying the [[Hilbert transform]]. |
| 312 | \[ \begin{align} &\frac{1}{x^n} \\ &:= \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log |x| \end{align} \] | \[ -i\pi \frac{(-i 2\pi \xi)^{n-1}}{(n-1)!} \sgn(\xi) \] | \[ -i\sqrt{\frac{\pi}{2}}\, \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega) \] | \[ -i\pi \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega) \] | \[ \frac{1}{x^n} \] is the [[homogeneous distribution]] defined by the distributional derivative \[ \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log|x| \] |
| 313 | \[ |x|^\alpha \] | \[ -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|2\pi\xi|^{\alpha+1}} \] | \[ \frac{-2}{\sqrt{2\pi}}\, \frac{\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} \] | \[ -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} \] | This formula is valid for \[ 0 > \alpha > -1 \]. For \[ \alpha > 0 \] some singular terms arise at the origin that can be found by differentiating 320. If \[ Re \alpha > -1 \], then \[ |x|^\alpha \] is a locally integrable function, and so a tempered distribution. The function \[ \alpha \mapsto |x|^\alpha \] is a holomorphic function from the right half-plane to the space of tempered distributions. It admits a unique meromorphic extension to a tempered distribution, also denoted \[ |x|^\alpha \] for \[ \alpha \neq -1, -3, ... \] (See [[homogeneous distribution]].) |
| \[ \frac{1}{\sqrt{|x|}} \] | \[ \frac{1}{\sqrt{|\xi|}} \] | \[ \frac{1}{\sqrt{|\omega|}} \] | \[ \frac{\sqrt{2\pi}}{\sqrt{|\omega|}} \] | Special case of 313. | |
| 314 | \[ \sgn(x) \] | \[ \frac{1}{i\pi \xi} \] | \[ \sqrt{\frac{2}{\pi}} \frac{1}{i\omega} \] | \[ \frac{2}{i\omega} \] | The dual of rule 311. This time the Fourier transforms need to be considered as a [[Cauchy principal value]]. |
| 315 | \[ u(x) \] | \[ \frac{1}{2}\left(\frac{1}{i \pi \xi} + \delta(\xi)\right) \] | \[ \sqrt{\frac{\pi}{2}} \left( \frac{1}{i \pi \omega} + \delta(\omega)\right) \] | \[ \pi\left( \frac{1}{i \pi \omega} + \delta(\omega)\right) \] | The function \[ u(x) \] is the Heaviside [[Heaviside step function|unit step function]]; this follows from rules 101, 301, and 314. |
| 316 | \[ \sum_{n=-\infty}^{\infty} \delta (x - n T) \] | \[ \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left( \xi -\frac{k }{T}\right) \] | \[ \frac{\sqrt{2\pi }}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right) \] | \[ \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right) \] | This function is known as the [[Dirac comb]] function. This result can be derived from 302 and 102, together with the fact that \[ \begin{align} & \sum_{n=-\infty}^{\infty} e^{inx} \\ = {}& 2\pi\sum_{k=-\infty}^{\infty} \delta(x+2\pi k) \end{align} \] as distributions. |
| 317 | \[ J_0 (x) \] | \[ \frac{2\, \operatorname{rect}(\pi\xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} \] | \[ \sqrt{\frac{2}{\pi}} \, \frac{\operatorname{rect}\left(\frac{\omega}{2}\right)}{\sqrt{1 - \omega^2}} \] | \[ \frac{2\,\operatorname{rect}\left(\frac{\omega}{2}\right)}{\sqrt{1 - \omega^2}} \] | The function \[ J_0(x) \] is the zeroth order [[Bessel function]] of first kind. |
세상의모든계산기 님의 최근 댓글
쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18 26년 1월 기준 국가 전문자격 종류 가맹거래사 감정사 감정평가사 검량사 검수사 경매사 경비지도사 경영지도사 공인노무사 공인중개사 관광통역안내사 관세사 국가유산수리기능자(24종목) 국가유산수리기술자 국내여행안내사 기술지도사 농산물품질관리사 물류관리사 박물관 및 미술관 준학예사 변리사 사회복지사 1급 산업보건지도사 산업안전지도사 세무사 소방시설관리사 소방안전교육사 손해평가사 수산물품질관리사 정수시설운영관리사 주택관리사보 청소년상담사 청소년지도사 한국어교육능력검정시험 행정사 호텔경영사 호텔관리사 호텔서비스사 2026 01.17