- 세상의 모든 계산기 수학, 과학, 공학 이야기 공학 ()
연가된 선로의 작용 인덕턴스 공식 유도 L=0.05+0.4605*log(D/r) [mH/km]
이 공식은 송전선로의 인덕턴스를 계산하기 위한 수식입니다.

선로의 인덕턴스는 전류가 흐를 때 발생하는 자기장을 저장하는 특성에 의해 결정되며, 이 공식은 두 개의 평행한 도체로 이루어진 선로에서 작용 인덕턴스를 구하는 데 사용됩니다.
인덕턴스는 주로 도체의 기하학적 배치(간격)와 도체의 반지름에 의해 결정됩니다. 아래에서 공식의 유도 과정을 단계별로 설명하겠습니다.
1. 자기 인덕턴스 정의
인덕턴스는 도체에 흐르는 전류가 생성하는 자기장이 에너지로 저장되는 특성입니다. 이 경우 선로의 인덕턴스는 선로의 길이당 자기 에너지로 정의할 수 있습니다.
두 평행 도체 사이의 인덕턴스는 자기 플럭스가 도체 주위에 형성된 공간에 저장되기 때문에 다음과 같이 표현할 수 있습니다.
\[
L = \frac{\mu_0}{2\pi} \cdot \ln\left(\frac{D}{r}\right) \quad [H/m]
\]
여기서:
- \( \mu_0 \)는 자유 공간의 투자율로 \( 4\pi \times 10^{-7} \, H/m \)입니다.
- \( D \)는 두 도체 사이의 거리입니다.
- \( r \)는 도체의 반지름입니다.
2. 인덕턴스의 자기장 계산
도체에 전류가 흐를 때, 자기장이 형성됩니다. 이 자기장은 전류가 흐르는 경로를 따라 변화하며, 이는 두 가지 주요 부분으로 나눌 수 있습니다:
1. 내부 인덕턴스: 도체 자체에서 발생하는 자기장에 의해 발생.
2. 외부 인덕턴스: 도체 외부 공간에 형성된 자기장에 의해 발생.
내부 인덕턴스
전류는 도체 내에서 흐르므로, 도체 내부에 존재하는 자기장을 고려해야 합니다. 내부 인덕턴스는 도체가 둥근 형태라고 가정할 때 \( \mu_0 \)와 도체의 반지름 \( r \)에 의해 결정됩니다. 내부 인덕턴스는 다음과 같이 계산됩니다:
\[
L_{\text{internal}} = \frac{\mu_0}{8\pi} \quad [H/m]
\]
외부 인덕턴스
외부 인덕턴스는 두 도체 사이의 거리에 의해 영향을 받으며, 도체 사이의 공간에 형성된 자기장을 포함합니다. 외부 인덕턴스는 다음과 같이 표현됩니다:
\[
L_{\text{external}} = \frac{\mu_0}{2\pi} \cdot \ln\left(\frac{D}{r}\right) \quad [H/m]
\]
여기서 \( D \)는 두 도체 사이의 거리, \( r \)는 도체의 반지름입니다.
3. 전체 인덕턴스 계산
전체 인덕턴스는 내부 인덕턴스와 외부 인덕턴스를 더하여 구할 수 있습니다. 이를 바탕으로 도체의 단위 길이당 인덕턴스는 다음과 같이 구해집니다:
\[
L = L_{\text{internal}} + L_{\text{external}} = \frac{\mu_0}{8\pi} + \frac{\mu_0}{2\pi} \cdot \ln\left(\frac{D}{r}\right)
\]
\[
L = \frac{\mu_0}{2\pi} \cdot \left( \frac{1}{4} + \ln\left(\frac{D}{r}\right) \right) \quad [H/m]
\]
이 수식을 [mH/km] 단위로 변환하면,
\[
L = 0.05 + 0.4605 \log\left(\frac{D}{r}\right) \quad [mH/km]
\]
여기서:
- 0.05 mH/km는 내부 인덕턴스에 해당합니다.
- \( 0.4605 \log\left(\frac{D}{r}\right) \)는 외부 인덕턴스에 해당합니다.
ㄴ $ 0.4605 = \frac{\mu_o}{2\pi} \cdot \frac{1}{\log\left(e\right)} * 10^{3} $ // 자연로그 ⇒ 상용로그
이로써 연가된 선로의 작용 인덕턴스를 계산하는 공식이 유도되었습니다.
세상의모든계산기 님의 최근 댓글
참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11 일반 계산기는 보통 리셋기능이 따로 없기 때문에, 다른 요인에 영향을 받을 가능성은 없어 보이구요. '원래는 잘 되었는데, 지금은 설정 값이 날아간다'면 메모리 값을 유지할만큼 배터리가 꾸준하게 공급되지 않기 때문일 가능성이 높다고 봐야겠습니다. - 태양광이 있을 때는 계산은 가능하지만, 서랍등에 넣으면 배터리가 없어서 리셋 https://blog.naver.com/potatoyamyam/223053309120 (교체 사진 참조) 1. 배터리 준비: * 다이소 등에서 LR54 (LR1130) 배터리를 구매합니다. (보통 4개 들이 1,000원에 판매됩니다. LR44와 높이가 다르니 혼동하시면 안됩니다.) 2. 준비물: * 작은 십자드라이버 (계산기 뒷면 나사용. 이것도 없으시면 다이소에서...) 3. 커버 분해: * 계산기 뒷면의 나사를 풀고, 머리 부분(윗부분)의 커버를 조심스럽게 분해합니다. (참고해주신 블로그 사진을 보시면 이해가 빠르실 겁니다.) 4. 배터리 교체: * 기존 배터리를 빼냅니다. * 새 LR54 배터리의 '+'극 방향을 정확히 확인하여 제자리에 넣어줍니다. (대부분의 경우 '+'극이 위로 보이도록 넣습니다.) 5. 조립: * 커버를 다시 닫고 나사를 조여줍니다. * 블로그 사진을 보니 배터리 연결선 등이 눌려서 씹혀 있네요. 원래 씹히도록 설계를 안하는데, 원래 그렇게 만들어 놓은 건지? 모르겠네요. 여튼 씹히면 단선될 가능성이 있으니, 잘 보시고 플라스틱 틈새 등으로 적절히 배치해서 안씹히게 하는 것이 좋습니다. 6. TAX 재설정: * 계산기의 전원을 켜고 TAX 요율을 10%로 다시 설정합니다. 2025 12.10 TI-nspire 입력 방법 solve({x+a+b=5,x)|a=1 and b=2 2025 12.01 질문하실 때는 항상 계산기 모델명을 정확하게 적으셔야 합니다. 2025 12.01