- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
"행렬에서 대각선, 행, 또는 열 중 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없다?
이 명제는 거짓입니다.
행렬에서 행, 또는 열에서 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없습니다.
하지만 대각선 성분이 0인 경우에는 역행렬을 가질 수 있습니다.

행렬의 기본 개념
역행렬이 존재하려면, 행렬이 가역이어야 합니다. 즉, 행렬 \( A \)에 대해 역행렬 \( A^{-1} \)가 존재하려면 \( A \)는 정사각 행렬이고, 행렬식(det \( A \))이 0이 아니어야 합니다. 행렬식이 0이면 행렬은 특이 행렬로 간주되어 역행렬을 가질 수 없습니다.
1. 행 또는 열이 모두 0인 경우
행이나 열이 0인 경우, 해당 행렬은 선형 독립성을 상실합니다. 예를 들어, \( n \times n \) 행렬의 어느 한 행이나 열이 0이면, 그 행렬은 완전히 0으로만 구성된 벡터를 포함하고 있다는 의미입니다. 이는 행렬의 행렬식이 0임을 의미합니다. 즉, 역행렬이 존재하지 않습니다.
예시:
\[
A = \begin{pmatrix}
1 & 2 & 3 \\
0 & 0 & 0 \\
4 & 5 & 6
\end{pmatrix}
\]
이 행렬은 두 번째 행이 모두 0입니다. 이 경우, \( A \)의 행렬식은 0이므로 역행렬이 존재하지 않습니다.
2. 대각선 성분이 모두 0인 경우
그러나 대각선이 모두 0이라고 해서 반드시 역행렬이 존재하지 않는 것은 아닙니다.
반대 예시:
\[
A = \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]
이 경우, 행렬식 det(A) = 0×0 - 1×1 = -1 이므로 역행렬이 있습니다.
\[
A^{-1} = \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]
결론
- 행이 한 줄 모두 0이면 행렬은 역행렬이 없습니다.
- 열이 한 줄 모두 0이어도 마찬가지로 역행렬이 없습니다.
- 대각선이 한 줄 모두 0인 경우에는 역행렬이 있을 수도 있습니다.
따라서 "대각선이든 행이든 열이든 한줄이 0이면 다 역행렬 없음"이라는 명제는 거짓입니다.
댓글1
-
세상의모든계산기
행이나 열이 0으로만 구성된다는 것은 행렬이 가지고 있는 정보가 손실된다는 의미입니다.
이를 선형 독립성과 연결해서 더 구체적으로 설명해볼게요.
1. 선형 독립성과 선형 종속성
선형 독립성이란, 여러 벡터가 있을 때 그 벡터들이 서로 독립적으로 정보를 전달한다는 의미입니다. 즉, 하나의 벡터가 나머지 벡터들의 선형 결합(곱한 뒤 더한 값)으로 표현될 수 없다면, 그 벡터들은 선형 독립입니다.선형 종속성은 그 반대입니다. 벡터들 중 하나가 나머지 벡터들로부터 생성될 수 있다면, 그 벡터들은 선형 종속입니다.
예시:
벡터 \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_2} = (2, 4)\)를 생각해봅시다.
\(\mathbf{v_2}\)는 \(\mathbf{v_1}\)의 2배입니다. 즉, \(\mathbf{v_2}\)는 \(\mathbf{v_1}\)에 의해 표현될 수 있으므로, 이 두 벡터는 선형 종속입니다.반면, \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_3} = (3, 1)\)는 서로 독립적입니다. \(\mathbf{v_3}\)를 \(\mathbf{v_1}\)로 표현할 수 없기 때문에 선형 독립입니다.
2. 행이나 열이 0일 때의 의미
이제 행렬에서 행이나 열이 0인 경우를 생각해 봅시다.(1) 행이 0인 경우
행렬에서 행은 하나의 벡터처럼 볼 수 있습니다. 만약 행렬 \( A \)의 어떤 행이 \( 0 \)으로만 이루어져 있다면, 그 행은 다른 행들과 어떤 관계도 없으며, 그 행 자체는 아무 정보도 전달하지 않습니다. 즉, 그 행은 선형 독립성을 상실하게 됩니다.선형 독립성은 행렬의 랭크(rank)와 관련이 있는데, 행렬의 랭크는 행렬에서 선형 독립적인 행 또는 열의 수를 의미합니다. 어떤 행이 0이면, 그 행은 독립적이지 않으므로 랭크가 줄어들고, 결과적으로 역행렬을 구할 수 없게 됩니다.
예시:
\[
A = \begin{pmatrix}
1 & 2 & 3 \\
0 & 0 & 0 \\
4 & 5 & 6
\end{pmatrix}
\]
위 행렬에서 두 번째 행은 \( 0 \)으로만 이루어져 있습니다. 이 행은 다른 행들과 어떤 관계도 없으며, 아무런 정보를 주지 않습니다. 따라서 이 행렬은 선형 독립성을 상실한 것이고, 역행렬이 존재하지 않습니다.(2) 열이 0인 경우
열이 0인 경우도 마찬가지입니다. 행렬의 어떤 열이 모두 0이면, 그 열은 다른 열들과 독립적으로 존재하지 않고, 그 열이 제공하는 정보가 전혀 없기 때문에 역행렬을 구할 수 없습니다. 이 역시 선형 독립성의 상실로 이어집니다.예시:
\[
B = \begin{pmatrix}
1 & 0 & 3 \\
4 & 0 & 6 \\
7 & 0 & 9
\end{pmatrix}
\]
이 행렬에서 두 번째 열은 모두 0입니다. 따라서 이 열은 다른 열들과 선형 독립적이지 않으며, 이 행렬의 행렬식은 0이 되어 역행렬이 없습니다.3. 요약
- 행 또는 열이 0이라는 것은 그 벡터가 아무 정보도 전달하지 않음을 의미합니다.
- 행렬의 행이나 열이 0이면, 그 행렬은 선형 독립성을 상실하고, 행렬식이 0이 되며, 역행렬이 존재하지 않습니다.
세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28