- 세상의 모든 계산기 수학, 과학, 공학 이야기 공학 ()
[문제] 점성유체 - 전단력이 0이 되는 지점의 높이는?
문제:
바닥으로부터 높이 \( y \)(m)일 때 유속이 \( v(y) = -2y^2 + 4y\) (m/s)인 점성유체가 흐르고 있습니다.
이 유체의 전단력이 0이 되는 지점까지의 높이는 얼마입니까?
1. \( 1 \)
2. \( 2 \)
3. \( 3 \)
4. \( 4 \)
해설:
유속이 \( v(y) = -2y^2 + 4y \)로 주어졌을 때, 전단력은 유체의 점성에 의한 힘으로, 뉴턴의 점성 법칙에 의해 다음과 같이 주어집니다:
\[ \tau = \mu \frac{dv}{dy} \]
여기서 \( \mu \)는 유체의 점성계수입니다.
유속 분포에 따라 \( \frac{dv}{dy} \)를 구하면:
\[ \frac{dv}{dy} = \frac{d}{dy} \left( -2y^2 + 4y \right) = -4y + 4 \]
전단력이 0이 되는 지점을 찾기 위해 \( \tau = 0 \)이 되는 \( y \)값을 찾습니다:
\[ \tau = \mu \left( -4y + 4 \right) \]
\[ 0 = \mu \left( -4y + 4 \right) \]
점성계수 \( \mu \)가 0이 아니므로:
\[ -4y + 4 = 0 \]
\[ 4y = 4 \]
\[ y = 1 \]
따라서 전단력이 0이 되는 지점의 높이는 \( y = 1 \)입니다.
정답은 1번, \( 1 \)입니다.
점성유체 (Viscous fluid) :
점성유체는 흐름에 대한 내부 저항을 가진 유체를 말합니다. 이러한 유체는 움직일 때 마찰력이 발생하며, 이로 인해 에너지가 소산됩니다. 점성의 정도는 유체마다 다르며, 점성이 높을수록 유체의 흐름에 대한 저항이 커집니다.
주요 특징:
- 흐름에 대한 내부 저항 존재
- 층류 흐름에서 속도 구배 발생
- 점성으로 인한 에너지 손실
예시: 꿀, 오일, 물 등
전단력 (Shear force) :
전단력은 물체의 한 부분을 다른 부분에 대해 평행하게 미끄러지게 하는 힘입니다. 유체 역학에서 전단력은 유체 층 사이에 작용하는 힘으로, 점성유체의 흐름을 이해하는 데 중요한 개념입니다.
주요 특징:
- 물체나 유체의 표면에 평행하게 작용
- 유체의 변형률과 관련됨
- 점성유체의 흐름에서 중요한 역할
점성유체와 전단력은 밀접한 관련이 있습니다. 점성유체가 흐를 때, 유체 층 사이에 속도 차이가 발생하며, 이로 인해 전단력이 생깁니다. 이 전단력은 유체의 흐름을 방해하고 에너지를 소산시키는 역할을 합니다.
댓글2
-
세상의모든계산기
유속과 전단력을 그래프로 나타내려면,
먼저 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)와 전단력 \( \tau = \mu \left( -4y + 4 \right) \)를 그래프로 표현하면 됩니다.
여기서 전단력은 점성계수 \( \mu \)에 비례합니다.
import numpy as np import matplotlib.pyplot as plt # Define the height range y = np.linspace(0, 4, 400) # Define the velocity function v = -2 * y**2 + 4 * y # Define the shear stress function (assuming mu = 1 for simplicity) mu = 1 tau = mu * (-4 * y + 4) # Plot the velocity profile plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(y, v, label='Velocity (v)') plt.axhline(0, color='gray', linewidth=0.5, linestyle='--') plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1') plt.title('Velocity Profile') plt.xlabel('Height (y)') plt.ylabel('Velocity (v)') plt.legend() plt.grid(True) # Plot the shear stress profile plt.subplot(1, 2, 2) plt.plot(y, tau, label='Shear Stress (τ)', color='orange') plt.axhline(0, color='gray', linewidth=0.5, linestyle='--') plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1') plt.title('Shear Stress Profile') plt.xlabel('Height (y)') plt.ylabel('Shear Stress (τ)') plt.legend() plt.grid(True) plt.tight_layout() plt.show()위 코드는 다음과 같이 작동합니다:
1. \( y \)의 범위를 0에서 4까지 정의합니다.
2. 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)를 계산합니다.
3. 전단력 함수 \( \tau = \mu (-4y + 4) \)를 계산합니다. 여기서 \( \mu = 1 \)로 가정합니다.
4. 두 개의 서브플롯을 만들어 유속 프로파일과 전단력 프로파일을 각각 그래프로 그립니다.위의 코드를 실행하면 유속과 전단력의 그래프가 나타납니다. 유속 그래프에서는 포물선 형태의 곡선을 볼 수 있으며, 전단력 그래프에서는 직선의 기울기가 -4인 그래프를 볼 수 있습니다.
이제 이 코드를 실행해 보겠습니다.

위 그래프는 주어진 조건에 따른 유속과 전단력을 나타낸 것입니다.
1. **유속 프로파일** (왼쪽 그래프):
- 유속 함수 \( v(y) = -2y^2 + 4y \)는 포물선 형태를 띠며, \( y = 1 \)에서 최대값을 가집니다.
- \( y = 0 \) 및 \( y = 2 \)에서 유속은 0이 됩니다.2. **전단력 프로파일** (오른쪽 그래프):
- 전단력 함수 \( \tau = \mu (-4y + 4) \)는 기울기가 -4인 직선입니다.
- \( y = 1 \)에서 전단력이 0이 됩니다.이 그래프를 통해 유속이 최대가 되는 지점과 전단력이 0이 되는 지점을 명확하게 확인할 수 있습니다.
-
세상의모든계산기
fx-570 ES 의 solve 로 구할 수 없는지?
fx-570 ES 와 같은 보급형 공학용 계산기에서는 solve 기능 내에서 미분(계수)처리를 할 수 없습니다.
따라서 solve 기능으로 답을 찾을 수는 없습니다.


로 템플릿 불러오고 수식과 x=1 부분 완성.이런 식으로 x=1, x=2, x=3, x=4
모두 대입해 보고 0이 나오는지 확인하는 방법은 있습니다.
미분하는 것보다는 느리겠죠?
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 '주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다'는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 '두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니, 원하는 답이 나오지 않는 상황이 발생하였다.'고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형이 됩니다. ㄴ 꼭 변형해야하는 것은 아니지만, 이것이 알아보기 쉽기 때문에 변형시키는 것입니다. 변경하지 않은 2개 조건의 식(con1) 을 이용해 위와 같이 하나의 y & z 1차 방정식을 유도할 수 있는데요. 변경하는 나머지 1개의 방정식이 con1에서 유도된 방정식과 동일하다면 하나의 답이 구해지지 않는 상황이 발생하는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30