• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 회귀 분석 Regression Analysis

    • Profile
      • 세상의모든계산기
      • 2024.10.17 - 12:41 2016.04.07 - 09:32 1096 1

    image.png

     

    회귀 분석(Regression Analysis)은 주어진 데이터에서 종속 변수와 독립 변수 간의 관계를 수학적으로 모델링하는 기법으로, 데이터의 패턴을 이해하고 예측하는 데 사용됩니다.

    기본적인 목적은 관찰된 데이터를 기반으로 추정된 모델을 통해 예측하거나, 변수 간의 관계를 설명하는 것입니다.

    이를 통해, 과거 데이터를 분석하여 미래의 결과를 예측할 수 있는 매우 유용한 도구로 활용됩니다.

     

    주요 회귀 방법들

     

    1. 선형 회귀:


       가장 기본적이고 많이 사용되는 회귀 기법입니다. 선형 회귀는 데이터 포인트들이 직선으로 표현될 수 있는 상황에서 효과적입니다.

    수식은 보통 다음과 같은 형태로 주어집니다:  
       \[
       y = \beta_0 + \beta_1x + \epsilon
       \]
       여기서 \(y\)는 종속 변수, \(x\)는 독립 변수, \(\beta_0\)와 \(\beta_1\)는 회귀 계수, \(\epsilon\)은 오차 항입니다.

     

    이 방법은 독립 변수와 종속 변수 간의 직선적인 관계를 추정하는 데 적합하며, 데이터의 경향성을 분석하는 데 자주 사용됩니다.

     

    2. 다 회귀:


       선형 회귀의 확장판으로, 독립 변수와 종속 변수 간의 관계가 직선이 아니라 곡선으로 나타날 때 사용됩니다.

    이 경우 2차, 3차, 또는 그 이상의 다항식을 이용해 복잡한 곡선 형태의 관계를 모델링합니다.

    예를 들어, 2차 회귀는 다음과 같은 형태를 가집니다:  
       \[
       y = \beta_0 + \beta_1x + \beta_2x^2 + \epsilon
       \]

     

       다차원 데이터를 다루는 경우나 복잡한 패턴을 표현하는 데 유용합니다.

     

    3. 로그 회귀:


       종속 변수가 로그 함수로 표현되는 회귀 모델입니다.

    데이터가 지수적인 변화를 보일 때 이 방법을 사용하며, 로그 변환을 통해 데이터를 직선화한 후 선형 회귀를 적용할 수 있습니다.

    일반적으로 아래와 같은 형태의 수식을 가집니다:

    \[
    y = \beta_0 + \beta_1 \ln(x) + \epsilon
    \]
     

    로그 회귀는 데이터가 급격한 증가 또는 감소를 보일 때 그 관계를 잘 모델링합니다.

    예를 들어, 소득에 따른 소비의 증가나 기술 발전에 따른 생산성 증가 등에서 로그 변환을 적용해 예측할 수 있습니다.

     

    4. 지수 회귀:


       로그 회귀와 반대로, 지수적으로 증가하거나 감소하는 데이터를 모델링하는 회귀 방법입니다.

    지수 회귀의 수식은 다음과 같은 형태를 띕니다:

    \[
    y = \beta_0 e^{\beta_1 x} + \epsilon
    \]

     

    이 모델은 경제 성장률, 인구 증가율, 바이러스 확산 등과 같이 시간이 지남에 따라 변화 속도가 급격히 달라지는 데이터를 모델링하는 데 적합합니다.

    예를 들어, 초기에 완만하게 증가하다가 특정 시점부터 급격히 증가하는 데이터에 자주 사용됩니다.

     

    회귀 분석의 목적

     

    회귀 분석은 크게 두 가지 주요 목적을 가지고 있습니다.

    1. 예측: 회귀 모델을 통해 새롭게 입력된 독립 변수에 대한 종속 변수의 값을 예측할 수 있습니다. 예를 들어, 경제 분야에서 과거 데이터를 이용해 주식 시장의 미래 가격을 예측하거나, 기상 데이터로부터 날씨를 예측하는 데 사용할 수 있습니다.

    2. 설명: 회귀 분석은 데이터의 변수 간 관계를 이해하는 데도 중요한 도구입니다. 독립 변수가 종속 변수에 미치는 영향을 분석함으로써, 어떤 요인이 결과에 가장 크게 기여하는지 파악할 수 있습니다. 예를 들어, 마케팅 데이터에서 고객의 구매 행동에 가장 영향을 미치는 요소를 찾아낼 수 있습니다.

     

    회귀 분석의 한계

     

    회귀 분석은 매우 강력한 도구지만, 몇 가지 한계가 존재합니다.

     

    첫째, 상관관계와 인과관계의 혼동입니다. 회귀 분석은 변수 간의 상관관계를 파악할 수 있지만, 그 상관관계가 인과관계라고 확신할 수는 없습니다.

    둘째, 다중공선성 문제로 인해 독립 변수들이 서로 강하게 상관되어 있을 때 모델의 정확성이 떨어질 수 있습니다.

    마지막으로, 오버피팅 문제도 주의해야 합니다. 모델이 너무 복잡해지면 학습 데이터에는 매우 잘 맞지만, 새로운 데이터에는 제대로 예측하지 못하는 경우가 발생할 수 있습니다.

     

    회귀 분석의 활용 분야

     

    회귀 분석은 경제학, 사회학, 생물학, 기계 학습 등 다양한 분야에서 활용됩니다.

    예를 들어, 경제학에서는 소비자 지출과 소득 간의 관계를 분석하거나, 기계 학습에서는 데이터의 패턴을 학습해 예측 모델을 만들 때 사용됩니다.

     

     

    링크:


    - [위키 (한글)](https://ko.wikipedia.org/wiki/%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D)
    - [위키 (영어)](https://en.wikipedia.org/wiki/Regression_analysis)
    - [블로그](http://socialinnovation.tistory.com/145)

     

    Attached file
    image.png 3.1KB 20
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 16 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 60 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 310 10 2025 12.28 xe(rhymix) 짧은주소 사용 중 리디렉션으로 인한 '색인 생성 안됨' 문제 해결중 134 1 2025 12.18 샤프 계산기(EL-W506T, EL-5500X 등) 정적분 계산시 오차 주의 - 정적분 정밀도 높이기 181 2 2025 12.11

    세상의모든계산기 님의 최근 댓글

    쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739   3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다.   4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다.   x, y 값을 이용해 최종 결과를 구합니다.  2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데,  버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고,  【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨.    ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18 26년 1월 기준 국가 전문자격 종류  가맹거래사 감정사 감정평가사 검량사 검수사 경매사 경비지도사 경영지도사 공인노무사 공인중개사 관광통역안내사 관세사 국가유산수리기능자(24종목) 국가유산수리기술자 국내여행안내사 기술지도사 농산물품질관리사 물류관리사 박물관 및 미술관 준학예사 변리사 사회복지사 1급 산업보건지도사 산업안전지도사 세무사 소방시설관리사 소방안전교육사 손해평가사 수산물품질관리사 정수시설운영관리사 주택관리사보 청소년상담사 청소년지도사 한국어교육능력검정시험 행정사 호텔경영사 호텔관리사 호텔서비스사 2026 01.17
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.10.17 - 12:11 2024.10.17 - 12:10 #50131

      최소 자승법 (OLS, Ordinary Least Squares Method)


      https://allcalc.org/9078

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.