- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
안티로그 Antilog 가 뭐지?? 첨 들어봤넹...
웹을 검색하다가 "안티로그"라는 단어를 처음 보게 되었습니다.
뭔가 로그에 대한 비난을 쏟아낼 것 같은 느낌이 들어서 움찔했는데,
그냥 '상용로그의 역함수'이더라구요.
(간혹 자연로그의 역함수로 설명하기도 합니다. 그냥 로그의 역함수로 보면 될 듯.)
괜히 쫄았네.ㅎ
"Antilog"는 수학에서 로그의 역연산을 의미합니다.
기본적으로 로그는 어떤 수가 특정한 밑에 대해 몇 번 곱해져서 다른 수가 되는지 찾는 과정입니다.
이때 antilog는 그 과정을 거꾸로 하는 작업으로, 주어진 로그 값으로부터 원래의 숫자를 구하는 것입니다.
예시
- 만약 우리가 \( \log_{10}(x) = 2 \)라는 값을 가지고 있다면, 이는 10을 몇 번 곱했을 때 \(x\)가 되는지 알려줍니다.
- \( \log_{10}(x) = 2 \)는 \( x = 10^2 \), 즉 \( x = 100 \)이 됨을 의미합니다.
- 이때 \(100\)을 "antilog"라고 부를 수 있습니다.
일반식
주어진 로그 값 \( y \)에 대해, 밑 \( b \)에 대한 antilog는 \( b^y \)입니다.
- 예를 들어, \( y = 3 \)이고 \( b = 2 \)인 경우, antilog는 \( 2^3 = 8 \)이 됩니다.
계산기에서 antilog 사용
일반 계산기에서는 보통 \(10^x\) 또는 \(e^x\) 키를 사용하여 10진수나 자연 로그의 antilog를 계산할 수 있습니다.
댓글4
-
세상의모든계산기
Logarithm Table (로그 테이블)
https://maths.forkids.education/antilog-log-table-how-to-use-see-value/
Download Print-Friendly PDF Version:
File 1 (1 to 50)
and
File 2 (51 to 99) -
세상의모든계산기
Antilogarithm Table (안티로그 테이블)
Download Print Friendly Antilog Table PDF File:
and
-
세상의모든계산기
log(k)= 1.5629228687415 에서 k 를 구할 때
말씀하신 내용을 반영하여 주어진 로그 값 \(\log_{10}(k) = 1.5629228687415\)에서 \(k\) 값을 정확하게 찾는 방법을 다시 설명드리겠습니다.
1. 정수 부분과 소수 부분 분리:
\[
\log_{10}(k) = 1.5629228687415
\]
여기서 정수 부분은 1이고, 소수 부분은 0.5629228687415입니다.2. 소수 부분을 두 자리로 반올림:
소수 부분 0.5629228687415을 두 자리로 반올림하면 0.56이 됩니다.3. 안티로그 표에서 0.56 찾기:
안티로그 표의 세로축에서 0.56을 찾습니다. 해당 행에서 첫 번째 열의 값은 3631입니다.4. 소수 부분의 세 번째 자리 반영:
소수 부분의 세 번째 자리는 2입니다. 0.56 행의 두 번째 열(0.562에 해당)을 찾아야 합니다. 이 값은 3648입니다.5. 소수 부분의 네 번째 자리 반영:
소수 부분의 네 번째 자리는 9입니다. Mean Differences 열에서 9에 해당하는 값을 찾습니다. 이 값은 8입니다.6. 값 더하기:
안티로그 표의 0.562에 해당하는 값인 3648에 Mean Differences의 9에 해당하는 값 8을 더합니다:
3648 + 8 = 3656안티로그표의 값은 원래의 값을 1000배 한 값이므로, 원래값은 ÷1000 으로 구할 수 있습니다.
따라서 소수부분에 해당하는 값은 $ 10^{0.5629228687415} = 3.656 $ 입니다.
7. 정수 부분 반영:
\[
k = 10^{1.5629228687415} = 10^1 \times 10^{0.5629228687415}
\]정수 부분 1을 반영하기 위해 \(10^1\)을 곱합니다:
\[
k = 10^1 \times 3.656 = 10 \times 3.656 = 36.56
\]따라서 최종적으로 주어진 로그 값 \(\log_{10}(k) = 1.5629228687415\)에서 \(k\) 값을 구하면, \(k \approx 36.56\)이 됩니다.
세상의모든계산기 님의 최근 댓글
낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요. 처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다. 이제 이해되었습니다. 지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다. 하지만 여기서 처음 모양으로 더 이상 진행되진 않네요. 2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다. https://allcalc.org/30694#comment_30704 2025 10.08 분수의 분모 아닌 v만 w로 치환해 놓고, 결과를 completesquare 돌리면 앞부분은 묶이는 듯 합니다. 2025 10.08