- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
[chatgpt-4o] 수학수업-시험에 계산기가 도입이 될까?
한국에서는 수학 시간에 계산기를 사용하지 않아. 왜냐하면 가장 중요한 시험인 대학수학능력시험에서 계산기를 사용할 수 없기 때문이라고 생각하는데. 앞으로도 이런 상황은 유지될까? 아니면 계산기가 수업-시험에 모두 도입이 될까?
chatgpt-4o
한국에서 수학 시간에 계산기를 사용하지 않는 주된 이유는 말씀하신 대로 대학수학능력시험(수능)에서 계산기 사용이 금지되어 있기 때문입니다. 수능은 한국의 대학 입시에 매우 중요한 시험이므로, 학생들은 시험 환경에 맞추어 준비할 필요가 있습니다. 이는 교육 방식에 큰 영향을 미치며, 학교에서도 수능에 맞춘 교육을 제공하게 됩니다.
앞으로 이 상황이 유지될지, 아니면 계산기가 수업과 시험에 도입될지는 여러 가지 요소에 따라 달라질 수 있습니다. 몇 가지 고려할 만한 요소들은 다음과 같습니다:
1. **교육 정책의 변화**: 교육부가 수학 교육의 목표와 방법에 대한 재검토를 통해 계산기의 활용을 허용할 가능성도 있습니다. 예를 들어, 다른 국가들처럼 계산기 사용을 통해 더 높은 수준의 문제 해결 능력이나 응용력을 기르는 방향으로 전환할 수도 있습니다.
2. **수능 제도의 변화**: 수능 시험 제도가 바뀌어 계산기 사용이 허용된다면, 학교에서도 이에 맞추어 교육 방식을 변화시킬 가능성이 높습니다. 현재까지는 수능에서 계산기 사용이 허용된다는 공식적인 계획은 없지만, 교육 제도의 변화는 언제든지 가능성이 있습니다.
3. **국제적인 교육 트렌드**: 국제적으로 계산기 사용이 일반화되어 있는 추세를 반영하여, 한국 교육 시스템도 점차 계산기 사용을 허용하는 방향으로 나아갈 수 있습니다. 이는 특히 STEM(Science, Technology, Engineering, Mathematics) 분야의 교육 강화와 연관이 있습니다.
4. **기술 발전과 교육 도구의 변화**: 기술이 발전함에 따라, 교육 현장에서의 도구 사용에 대한 인식도 변화할 수 있습니다. 디지털 교육 도구와 함께 계산기 사용을 통합하는 교육 모델이 도입될 가능성도 있습니다.
하지만 현재로서는 수능에서의 계산기 사용 금지가 유지되는 한, 학교 수업에서도 계산기 사용이 제한될 가능성이 높습니다. 이는 학생들이 시험 환경에 익숙해지고, 계산 능력을 기르는 데 초점을 맞추기 위해서입니다. 따라서 계산기의 도입 여부는 주로 수능 제도의 변화에 따라 결정될 것으로 보입니다.
세상의모든계산기 님의 최근 댓글
그래프로 확인 그래프 함수로 지정하고, 매우 좁은 구간으로 그래프를 확대해 보면 불연속적인 그래프 모습이 확인됩니다. 이것은 한계 digits(15자리) 이상을 처리하지 못하기 때문일 것이구요. 다만 특이한 점은, 그래프상으로 교점에 해당하는 구간이 73.049507058477≤x≤73.049507058484 사이로 나오는데 -> 이 값은 solve에서 여러 방법으로 직접 구해진 해의 x 가 포함되는 구간입니다. -> 이 값은 해의 참값의 appprox 값 x=73.049507058547 은 포함되지 않는 구간입니다. 2025 10.21 tns 파일 첨부 sol_num_vs_exact.tns 2025 10.21 검증하면 1번 식을 x에 대해 정리하고, → 그 x 값을 2번 식에 대입해 넣으면 → 그 결과로 x는 사라지고 y에 대한 식이 되니, y에 대해 정리하면 참값 y를 얻음. 얻은 y의 참값을 처음 x에 대해 정리한 1번식에 대입하면 참 값 x를 얻음. 구해진 참값의 근사값을 구하면 x=73.049507058547 and y=23.747548955927 어떤 solve로 나온 근사값이든, 근사값으로는 원래의 식 모두를 만족시킬 수 없음. 2025 10.21 그렇다면 해의 참 값은? 먼저, 모든 decimal 값을 유리수로 변환하고, solve 로 답을 구함. 변수 x로는 구해지는데 y로는 "Error: Resource exhaustion" 발생 // 이유는 모름. approx(exsol1) x=73.049507058547 and y=23.747548955927 2025 10.21 각 결과값의 비교 x y {x} 73.049507058553 23.747548955926 {y} 73.049507058479 23.747548955927 {x=1,y=1} 73.049507058477 23.747548955927 approx() 전처리 73.049507058479 23.747548955926 linsolve 73.049507058478 23.747548955926 approx(참 해) 73.049507058547 23.747548955927 * 구해진 x값들은 차이가 비교적 큰데, y값들은 차이가 적은 편입니다. 2025 10.21