- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
알파고에 사용된 것은 GPU 가 아니라 TPU?
출처 : https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
![]() |
| Tensor Processing Unit board |
![]() |
| Server racks with TPUs used in the AlphaGo matches with Lee Sedol |
- 이세돌과의 대국에서 승리를 확정했던 3국의 기보가 붙어있네요. (4국이었다면 좀 더 인간적?이었을 것 같기도 하고...)
- 기존에 알려졌던 것과 달리, 알파고 AI(Tensorflow) 구현에 있어 GPU(범용 칩)이 아닌 주문형 반도체인 ASIC 칩을 사용한 것 같습니다. (이건 확실치 않습니다)
- 그림상 하나의 M/B 에 4개의 검정 케이블이 바로 TPU와 M/B 를 연결하기 위한 PCIE extension 케이블인 것으로 보입니다.
- 사진상으로는 개별 머쉰이 총 (6*8)-2 = 46 개입니다.
46*4 = 184 인데... 기존에 176개 GPU가 사용되었다고 알려진 것을 생각하면 얼추 맞는 것 같긴 하네요. - 사용된 CPU 갯수도 (기존에 추정되었던 개별 CPU 단위가 아니라) 코어(혹은 쓰레드) 단위일 가능성이 높아 보입니다.
46*12C=552C, 46*24T=1104T. (듀얼이라면, 2208T인데 1920과 얼추 맞는 것 같습니다. 1920=24*2*40)
참고 링크
- http://www.recode.net/2016/5/20/11719392/google-ai-chip-tpu-questions-answers
댓글5
-
세상의모든계산기
월 스트리트 저널 기사 - 링크 : http://www.wsj.com/articles/google-isnt-playing-games-with-new-chip-1463597820 를 읽어보니 GPU 가 이닌 ASIC을 사용한 것이 확실해 보이네요.
When Google’s AlphaGo computer program bested South Korean Go champion Lee Se-dol in March, it took advantage of a secret weapon: a microprocessor chip specially designed by Google.
기사에 따르면 다른 대안(아마도 GPU)보다 전반적으로 10배 빠른 계산이 가능했다는 것 같습니다. (기사에는 MS 도 AI 분야에 FPGA 칩을 사용한다고 합니다. IBM 도 전용 칩을 쓴다고 하구요. 아범이야 뭐 당연한거지만...)
-
세상의모든계산기
구글 직원(Solutions Engineer for Google Cloud Platform at Google. Co-organizer @codemotion_es)의 트윗
https://twitter.com/nachocoloma/status/733169977432395776
이로서 확실해졌네요. GPU 는 사용되지 않았습니다. 대신 더 뛰어난 TPU 가 사용되었습니다.
(당분간!) 범용 PC 구성(CPU+GPU)으로 알파고 수준에 도달하기는 쉽지 않겠습니다. 하물며 CPU 만 사용하는 상용 바둑 프로그램으로는...
-
세상의모든계산기
TPU의 전성비

출처 : https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html
Quantifying the performance of the TPU, our first machine learning chip
Wednesday, April 5, 2017
By Norm Jouppi, Distinguished Hardware Engineer, Google
(503 에러때문에 못본다면 블로그에서 날짜로 찾아보세요)


세상의모든계산기 님의 최근 댓글
쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18 26년 1월 기준 국가 전문자격 종류 가맹거래사 감정사 감정평가사 검량사 검수사 경매사 경비지도사 경영지도사 공인노무사 공인중개사 관광통역안내사 관세사 국가유산수리기능자(24종목) 국가유산수리기술자 국내여행안내사 기술지도사 농산물품질관리사 물류관리사 박물관 및 미술관 준학예사 변리사 사회복지사 1급 산업보건지도사 산업안전지도사 세무사 소방시설관리사 소방안전교육사 손해평가사 수산물품질관리사 정수시설운영관리사 주택관리사보 청소년상담사 청소년지도사 한국어교육능력검정시험 행정사 호텔경영사 호텔관리사 호텔서비스사 2026 01.17