- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
유효숫자 Significant figures
1. 정의
- 정확도에 영향을 주는 숫자 : Wikipedia(KO)
- 오차를 고려한다 해도 신뢰할 수 있는 숫자를 자릿수로 나타낸 것 : 두산 백과
- The significant figures of a number are those digits that carry meaning contributing to its precision : WIkipddia (EN)
- Each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first non-zero digit. : Oxford Dic
2. 특징
- 유효숫자의 갯수는 소숫점 위치와는 무관
- 자릿수만을 표현하기 위한 0은 유효숫자가 아니다. 0.000123 에서 1 앞의 0들
- 유효숫자 사이의 숫자는 유효숫자이다. (유효숫자는 연속으로 존재한다) 102 에서 1과 2가 유효숫자라면 0도 유효숫자
- 과학적 상수는 유효숫자가 무한대
- 수학은 오차 없는 정확한 숫자를 다루기 때문에 유효숫자 문제가 발생하지 않으나,
과학은 실험에 의한 오차가 항상 발생하기 때문에 유효숫자를 잘 파악해야 한다.
3. 구분
|
숫자 |
유효숫자의 갯수 |
비고 |
|
0.000123 |
1,2,3 |
앞의 0 무리는 자릿수를 표현하기 위한 것일 뿐 |
|
1.234 |
1,2,3,4 |
|
|
2.0 |
2,0 |
|
|
0.0 |
없음 |
모든 자리가 0 |
|
1.200E(-10) |
1,2,0,0 |
|
|
4×10² |
4 |
? |
|
내 손바닥 위의 사탕 1개 |
무한대 |
오차 없이 정확한 측정이 가능한 셈의 결과 |
|
무한대 |
과학적 상수 |
|
|
1980 (1의 자리 반올림) |
1,9,8 |
|
|
1980 (소숫점 첫째자리에서 반올림) |
1,9,8,0 |
|
4. 연산
- 덧셈, 뺄셈
소숫점 이하 자릿수가 짧은 것에 기준한다.
ex) 101.10 (소수이하2)+ 1.234 (소수이하3) + 3.109910 (소수이하6)
105.44 (소수이하2)
- 곱셈, 나눗셈
유효숫자의 갯수가 적은 것에 기준한다.
ex) 101.10 (유효5)× 1.234 (유효4)
124.7 (유효4)
1.2 kW (유효2) × 2 (유효무한대)
2.4 kW(유효2)
- 셋 이상의 숫자 연산시 유효 숫자 처리는 중간에 혹은 마지막에?
매 계산마다 유효숫자 처리를 하는 것이 원칙.
단, 중간 유효숫자 갯수보다 한자리 많게 계산함.(근거는 모르겠음. 곱하기에서만 한자리 많게 하는 건가?)
ex) 4.18 - 56.17 ⅹ (3.382 - 3.01)
= 4.18 - 56.17 ⅹ 0.37 ⇐ 뺄셈방법에 따라 소수점 이하 2자리로 맞춤.
= 4.18 - 20.(8) ⇐ 반올림하여 한자리를 추가한 후 유효숫자 2자리로 맞춤.
= -17 ⇐ 소수점 첫째 자리에서 반올림하여 소수점 이하 0자리로 맞춤. (4.18 - 20 = -15.82)
- 반올림? 버림?
댓글5
- 1
-
세상의모든계산기
연산 예제의 계산 (feat. TI nspire Tool - Significant Figures Calculator )




나름 계산해 과정까지 보여주긴 합니다만,
교제에서 나온 것과 결과가 다를 수 있습니다. 주의하세요.
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02