• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 0^0 =? (영의 영승)

    • Profile
      • 세상의모든계산기
      • 2024.11.01 - 01:15 2021.01.29 - 23:12 1468 3

    0power0.png

     

    오묘해요.

     

    ChatGPT-4o

     

    \(0^0\)의 값에 대해서는 수학에서 여러 가지 해석이 있습니다. 상황에 따라 다음과 같이 다르게 정의될 수 있습니다:

     

    1. 수학적 정의에 따른 경우: 대수학적으로, \(0^0\)은 보통 정의되지 않으며, 미정(indeterminate) 형태로 간주됩니다.

    이는 함수의 극한을 다룰 때나 복잡한 계산에서 자주 발생하는데, 극한에서의 표현에 따라 다르게 해석될 수 있기 때문입니다.

    예를 들어, \(\lim_{x \to 0} x^x = 1\)이지만 \(\lim_{x \to 0} 0^x\)는 0에 가까워집니다.

     

    2. 조합론이나 컴퓨터 과학에서의 경우: 조합론이나 이산 수학에서는 종종 편의상 \(0^0 = 1\)로 정의합니다.

    이는 공집합의 경우의 수를 1로 정의하는 것과 유사하게 쓰이며, 이 경우 특정 규칙의 일관성을 유지할 수 있습니다.

     

    따라서, \(0^0\)은 상황에 따라 1로 정의되기도 하지만, 순수 수학에서는 미정형으로 간주하는 것이 일반적입니다.

    Attached file
    0power0.png 76.0KB 48
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd Generation fx-991CW) 40 3 2025 12.28 xe(rhymix) 짧은주소 사용 중 리디렉션으로 인한 '색인 생성 안됨' 문제 해결중 43 2025 12.18 샤프 계산기(EL-W506T, EL-5500X 등) 정적분 계산시 오차 주의 - 정적분 정밀도 높이기 129 2 2025 12.11 미래 AI의 세 번째 임계점: '자율 AI 에이전트'와 '효율성'의 만남 415 2025 11.06 AI 발전의 두 번째 임계점: LLM과 창발적 능력의 시대. written by gemini-2.5 419 2025 11.06

    세상의모든계산기 님의 최근 댓글

    참고 : 라플라스 해법 1- 문제풀이의 개요 [출처] 라플라스 해법 1- 문제풀이의 개요|작성자 공학 엔지니어 지망생 https://blog.naver.com/hgengineer/220380176222 2026 01.01 3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은  조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요.  100÷7 = 14.285714285714285714285714285714   소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다.  2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다.  ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다.      * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬:    1     | 1  1   0   |    2     | 1  0  -3.5 |    3     | 0  2   8   |       행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재)      * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬:    1     | 1  1   0   |    2     | 1  0  -3.5 |    3     | 0  2   7   |       행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고)   수학적 핵심 원리: 선형 독립성(Linear Independence)     3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 '주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다'는 것입니다.      * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다.    * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다.     질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30
    글쓴이의 서명작성글 감추기 

    댓글3

    • Profile 0
      세상의모든계산기
      2024.11.01 - 01:12 2024.11.01 - 01:10 #51869

      실물 공학용 계산기는 대부분 undef 또는 Error 라고 표시됩니다.

      댓글
    • Profile 0
      세상의모든계산기
      2024.11.01 - 01:12 2024.11.01 - 01:12 #51872

      윈도우 계산기는 1로 표시됩니다.

      스크린샷 2024-11-01 011142.png

      Attached file
      스크린샷 2024-11-01 011142.png 7.4KB 10
      댓글
    • Profile 0
      세상의모든계산기
      2024.11.01 - 01:19 2024.11.01 - 01:15 #51876

      파이썬 프로그램에서는 1로 표시됩니다.

      fx-9750GIII 에 내장되어 있는 microPython 에서도 1로 나옵니다. 

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    3
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.