- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
SMPS등 회로 수리시, 뻥 방지 전구(회로) (feat. Chatgpt and deepseek)
뻥방지 전구(과전류 보호 전구)의 원리
SMPS(스위칭 모드 전원 공급 장치) 등의 전기장비 수리 후 테스트할 때 뻥방지 전구를 사용하는 이유는, 수리된 회로에 단락(쇼트) 또는 과부하 문제가 있을 경우 전원 투입 시 즉시 퓨즈가 나가거나 부품이 파손되는 것을 방지하기 위해서입니다.

ㄴ 쇼트 등 비정상 상태라서 SMPS 저항값이 1옴일 때를 가정하면, SMPS에 과전류(220A)가 흐르게 됨.
ㄴ 파라미터 V_source = 220 # 공급 전압 220V, R_normal = 1000 # 정상 SMPS 저항(Ω) 1k옴, R_fault = 1 # 비정상 SMPS 저항(Ω)
ㄴ 그래프는 단순 참고용으로, 실제 현실과 다릅니다.
원리 및 동작 방식
-
직렬 연결 방식
- AC 입력 전원과 SMPS 회로 사이에 전구(백열전구)를 직렬로 연결합니다.
- 만약 SMPS가 정상이라면, 전구는 거의 빛나지 않고 미세한 발열만 합니다.
- 만약 쇼트(단락)나 과부하가 있다면, 전구의 필라멘트가 밝게 빛나며 SMPS로 흐르는 전류를 제한합니다.
-
전류 제한 역할
- 뻥방지 전구는 전류가 지나치게 많아지면 저항이 급격히 증가하는 성질을 가집니다.
- 백열전구의 필라멘트는 PTC(Positive Temperature Coefficient) 성질을 가지므로, 과전류가 흐르면 순간적으로 저항이 증가하여 전류를 제한합니다.
- 결과적으로 퓨즈가 끊어지거나 부품이 폭발하는 것을 방지할 수 있습니다.
-
이상 여부 판별
- 전구가 꺼져 있다면 → 정상 동작 (SMPS가 부하를 정상적으로 공급)
- 전구가 순간 깜빡이고 꺼짐 → 정상 (정류 콘덴서 충전 후 정상 동작)
- 전구가 계속 켜져 있음 → 쇼트 가능성 높음 (SMPS 1차측에서 이상 발생)
- 전구가 매우 밝게 빛남 → 심각한 쇼트 (전원 투입 시 과전류 상태)

ㄴ 직렬 연결이기 때문에
ㄴ 전압 : 전체 회로에 걸리는 전압은 220V = 전구에 걸리는 전압 + SMPS에 걸리는 전압
ㄴ 전류 : 전구와 SMPS 회로에는 동일한 전류가 흐름.
ㄴ 그래프는 단순 참고용으로, 실제 현실과 다릅니다.
사용하는 전구의 종류
- 일반적으로 100W~200W 백열전구를 사용합니다.
- LED 전구는 이런 특성이 없기 때문에 사용할 수 없습니다.
- 전구의 전력(W)이 높을수록 저항값이 낮아져 초기 테스트 시 주의해야 합니다.
SMPS 수리 후 뻥방지 전구 테스트 절차
- SMPS의 1차측 입력선(AC 전원선)과 직렬로 백열전구를 연결
- 전원을 켜고 전구의 밝기를 확인
- 전구가 순간 깜빡이고 꺼지면 → 정상 작동
- 전구가 계속 밝게 켜지면 → 쇼트나 이상 부품 확인 필요
- 정상 작동을 확인한 후, 전구를 제거하고 직접 AC 입력 테스트 진행
장점
- 과전류로 인한 1차 회로 손상을 방지
- 퓨즈가 연속적으로 끊어지는 것을 막음
- 쇼트 여부를 빠르게 판단 가능
- 간단한 부품(백열전구)만으로 테스트 가능
한계점
- 전구의 저항 특성상 일부 회로에서는 오작동할 가능성 있음
- 고출력 SMPS 테스트 시 너무 낮은 전구 전력 사용 시 동작 불안정. (장비 정상이어도 전구에 불이 켜짐)
- 전구를 지나친 의존하면 근본적인 수리 문제를 놓칠 수도 있음
- 전구와 장비가 전압을 나눠 가지기 때문에 220V에서 정상 운영이 되는지 확인하려면 전구를 반드시 제거하고 테스트를 해야 정확함.
💡 결론:
뻥방지 전구는 SMPS 수리 후 초기 테스트에 유용한 도구이며, 쇼트 및 과부하를 빠르게 진단하는 역할을 합니다. 하지만, 전구를 통한 테스트만으로 모든 문제가 해결되지는 않으므로, 이후 오실로스코프 및 멀티미터를 활용한 추가 점검이 필요합니다.
import matplotlib.pyplot as plt
import numpy as np
# 한글 폰트 설정 (Windows 환경)
plt.rc('font', family='Malgun Gothic') # 맑은 고딕 사용
plt.rc('axes', unicode_minus=False) # 마이너스 기호 깨짐 방지
# 공통 파라미터
V_source = 220 # 공급 전압 220V
R_normal = 1000 # 정상 SMPS 저항(Ω)
R_fault = 1 # 비정상 SMPS 저항(Ω)
R_bulb_normal = 50 # 정상 작동시 전구 저항(Ω)
R_bulb_fault = 200 # 과전류시 전구 저항(Ω)
# 시나리오 1: 뻥방지 전구 없을 때
def scenario1():
I_normal = V_source / R_normal
I_fault = V_source / R_fault
plt.figure(figsize=(10,6))
bars = plt.bar(['정상 상태', '비정상 상태'],
[I_normal, I_fault],
color=['green', 'red'])
plt.ylabel('전류 (A)', fontsize=12)
plt.title('뻥방지 전구 없을 때 전류 비교', fontsize=14)
plt.ylim(0, 25)
# 주석 추가
for bar, label, resistance in zip(bars, ['정상', '비정상'], [R_normal, R_fault]):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.2f}A\nR={resistance}Ω',
ha='center', va='bottom')
plt.grid(axis='y', linestyle='--')
plt.show()
# 시나리오 2: 뻥방지 전구 있을 때
def scenario2():
# 정상 상태 계산
I_normal = V_source / (R_normal + R_bulb_normal)
V_smps_normal = I_normal * R_normal
V_bulb_normal = I_normal * R_bulb_normal
# 비정상 상태 계산
I_fault = V_source / (R_fault + R_bulb_fault)
V_smps_fault = I_fault * R_fault
V_bulb_fault = I_fault * R_bulb_fault
# 그래프 생성
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14,6))
# 전압 분배 비교 (스택형 막대 그래프)
labels = ['정상', '비정상']
smps_voltages = [V_smps_normal, V_smps_fault]
bulb_voltages = [V_bulb_normal, V_bulb_fault]
ax1.bar(labels, smps_voltages, color='blue', label='SMPS 전압')
ax1.bar(labels, bulb_voltages, color='orange', bottom=smps_voltages, label='전구 전압')
ax1.set_title('전압 분배 비교')
ax1.set_ylabel('전압 (V)')
ax1.legend()
# 각 전압 수치 표시
for i in range(len(labels)):
ax1.text(i, smps_voltages[i] / 2, f'{smps_voltages[i]:.2f}V', ha='center', color='white', fontsize=10)
ax1.text(i, smps_voltages[i] + bulb_voltages[i] / 2, f'{bulb_voltages[i]:.2f}V', ha='center', color='white', fontsize=10)
# 전류 비교
ax2.plot(labels, [I_normal, I_fault],
marker='o', linestyle='--', color='green')
ax2.set_title('전류 흐름 비교')
ax2.set_ylabel('전류 (A)')
ax2.grid(True)
# 전류 값 및 저항 값 표시
for i, (val, resistance) in enumerate(zip([I_normal, I_fault], [(R_normal + R_bulb_normal), (R_fault + R_bulb_fault)])):
ax2.text(i, val+0.05, f'{val:.2f}A\nR={resistance}Ω', ha='center')
plt.suptitle('뻥방지 전구 있을 때 동작 특성', fontsize=14)
plt.tight_layout()
plt.show()
# 그래프 생성
scenario1()
scenario2()
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30