- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
[계산] 지평선은 얼마나 멀리까지 보이는 걸까?
사람 눈높이(170cm) 에서 보이는 동일고도의 지평선은 몇 키로미터나 떨어져 있나?
- 측량학에서의 관점과 차이가 있을 수 있습니다.
Gemini
사람의 눈높이에서 지평선까지의 거리는 약 4.4km입니다.
하지만 이는 지구를 완벽한 구체로 가정하고 대기 굴절을 고려하지 않은 값입니다. 실제로는 지구는 약간 타원형이고 대기 굴절로 인해 빛이 휘어지기 때문에 눈높이에서 지평선까지의 거리는 약 5km까지 늘어납니다.
참고:
- 일반적인 성인의 눈높이는 약 170cm입니다.
- 지구의 반경은 약 6,371km입니다.
- 대기 굴절은 지구 대기가 빛을 약간 휘어지게 하는 현상입니다.
수학적 계산:
지구를 완벽한 구체로 가정하고, 눈높이를 h, 지평선까지의 거리를 d라고 하면 다음과 같은 식이 성립합니다.
d = √(2 * R * h)
여기서 R은 지구 반경입니다.
따라서, 눈높이가 170cm(h = 1.7m)일 때 지평선까지의 거리(d)는 다음과 같이 계산됩니다.
d = √(2 * 6,371,000m * 1.7m) ≈ 4,396m
대기 굴절을 고려하면 지평선까지의 거리는 약 10% 정도 증가하기 때문에 약 5km가 됩니다.
ChatGPT-4o
성인(170cm)의 눈높이에서 지평선까지의 거리를 계산하려면 지구의 곡률을 고려해야 합니다. 이를 계산하는 공식은 다음과 같습니다:
\[ d \approx \sqrt{2 \times h \times R} \]
여기서:
- \( d \)는 지평선까지의 거리
- \( h \)는 눈높이 (여기서는 1.7미터)
- \( R \)은 지구의 반지름 (약 6371 킬로미터)공식을 사용하여 계산해보겠습니다.
\[ d \approx \sqrt{2 \times 1.7 \times 6371000} \]
성인(170cm)의 눈높이에서 지평선까지의 거리는 약 4.65킬로미터입니다.
Claude 3.5 Sonnet
이 질문에 답하기 위해서는 지구의 곡률을 고려한 계산이 필요합니다. 간단한 수학적 모델을 사용하여 대략적인 답을 구해보겠습니다.
지구를 완벽한 구체로 가정하고, 대기의 굴절 효과는 무시하겠습니다. 계산에 필요한 정보는 다음과 같습니다:
1. 지구의 반경 (R): 약 6,371 km
2. 관찰자의 눈높이 (h): 1.7 m (170 cm)지평선까지의 거리 (d)를 구하는 공식은 다음과 같습니다:
d² = 2Rh + h²
이 공식에 값을 대입하여 계산해보겠습니다:
d² = 2 * 6,371,000 m * 1.7 m + (1.7 m)²
d² = 21,661,400 m² + 2.89 m²
d² = 21,661,402.89 m²d = √21,661,402.89 ≈ 4,654 m
따라서, 성인 눈높이(170cm)에서 바라본 지평선까지의 거리는 약 4.65 km입니다.
이 결과는 이상적인 조건을 가정한 것으로, 실제 상황에서는 대기의 굴절 효과로 인해 지평선이 약간 더 멀리 보일 수 있습니다. 또한 지형의 높낮이나 기타 요인들로 인해 실제 가시 거리는 달라질 수 있습니다.
댓글5
-
세상의모든계산기
TI-nspire CAS 로 살펴 보면
부분 확대 및 x축 vs y축 sacle 수정
-
세상의모든계산기
지평선까지의 거리를 계산할 때 사용하는 공식을 이해하기 위해, 지구의 곡률을 고려한 지평선 거리 계산을 기하학적으로 설명할 수 있습니다.
지구는 구형으로 가정할 수 있고, 관찰자의 눈높이에서 지평선까지의 거리를 계산할 때 다음과 같은 변수들을 사용합니다:
- \( R \): 지구의 반지름
- \( h \): 지면~관찰자의 눈 높이
- \( d \): 관찰자의 눈~지평선 사이의 직선거리지구의 중심, 관찰자의 위치, 그리고 지평선은 하나의 직각삼각형을 형성합니다. 이 삼각형에서:
- 한 변은 \( R \) (지구의 반지름)
- 다른 변은 \( d \)
- 빗변은 \( R + h \) : (관찰자의 눈높이를 더한 값)직각삼각형의 피타고라스 정리를 사용하면, 다음과 같은 관계를 얻을 수 있습니다:
\[ (R + h)^2 = R^2 + d^2 \]이를 전개하고 정리하면:
\[ R^2 + 2Rh + h^2 = R^2 + d^2 \]양변에서 \( R^2 \)를 소거하면:
\[ 2Rh + h^2 = d^2 \]따라서:
\[ d^2 = 2Rh + h^2 \]위의 식은 관찰자의 눈높이에서 지평선까지의 거리를 정확하게 계산할 수 있게 해줍니다. 일반적으로 \( h \)가 \( R \)에 비해 매우 작기 때문에 \( h^2 \) 항을 무시하고 근사치를 사용할 수 있습니다. 따라서 더 단순한 공식을 사용하면:
\[ d \approx \sqrt{2Rh} \]그러나 \( d^2 = 2Rh + h^2 \) 공식을 통해 더 정확한 계산이 가능합니다.
* d 의 거리도 눈~지평선까지 직선거리이지, 지구위 두 지점 사이의 거리(=지구 표면상의 거리=호의 길이)는 아님.
h^2 도 무시하는데 뭐... 직선이든 호든 무시할 수도 있지...
-
세상의모든계산기
그런데... d 공식 sqrt(2Rh+h^2)은 사람의 눈과 지평선의 직선 거리잖아?
사람이 서 있는 곳(땅)에서 지평선(땅)까지의 곡선거리(지면상 거리) 공식은?
Gemini
네, 맞습니다. 제가 이전에 말씀드린
d = √(2Rh + h^2)
공식은 사람의 눈과 지평선의 직선 거리를 계산하는 공식입니다. 죄송합니다, **사람이 서 있는 곳에서 지평선까지의 곡선 거리(지면상 거리)**를 계산하는 공식을 잘못 설명드렸습니다.**사람이 서 있는 곳에서 지평선까지의 곡선 거리(지면상 거리)**를 계산하는 공식은 다음과 같습니다.
D = R * arccos(1 - h / R)
여기서:
- D는 지면상 거리(곡선 거리)입니다.
- R은 지구 반경(약 6,371km)입니다.
- h는 눈높이(m)입니다.
예시:
눈높이가 170cm(h = 1.7m)일 때 지면상 거리(D)는 다음과 같이 계산됩니다.
D = 6,371,000m * arccos(1 - 1.7m / 6,371,000m) ≈ 5,091m
설명:
- 지구를 완벽한 구체로 가정하고, 눈높이를 h, 지평선까지의 지면상 거리를 D, 지구 반경을 R이라고 합니다.
- O는 지구 중심이고, A는 사람의 눈 위치, B는 지평선จุดบน 지표면입니다.
- 각 OAB는 원의 중심각이며, 크기는 다음과 같습니다.
θ = arccos(1 - h / R)
- 따라서, 지면상 거리(D)는 다음과 같습니다.
D = R * θ
- 위 공식을 이용하여 사람의 눈높이에 따른 지면상 거리를 계산할 수 있습니다.
주의:
- 이 공식은 지구를 완벽한 구체로 가정하고 대기 굴절을 고려하지 않은 값입니다.
- 실제 지면상 거리는 지구의 타원형 모양과 대기 굴절로 인해 약간 더 길어질 수 있습니다.
도움이 되었기를 바랍니다! 혹시 다른 궁금한 점이 있으면 언제든지 물어보세요.
ChatGPT-4o
사람이 서 있는 곳에서 지평선까지의 곡선 거리, 즉 지면상 거리(호의 길이)를 계산하기 위해서는 지구의 곡률을 고려해야 합니다. 이 거리 계산은 원의 호 길이를 구하는 방법과 유사합니다.
먼저, 관찰자의 눈높이에서 지평선까지의 직선 거리를 \( d \)라고 할 때, 지구의 중심에서 지평선까지의 각도 \( \theta \)를 구해야 합니다. 이 각도는 다음과 같이 구할 수 있습니다:
\[ \theta = \cos^{-1}\left(\frac{R}{R + h}\right) \]여기서:
- \( R \)은 지구의 반지름
- \( h \)는 관찰자의 눈높이그런 다음, 이 각도를 이용하여 호의 길이를 구할 수 있습니다:
\[ s = R \theta \]이를 단계별로 계산해보겠습니다.
사람이 서 있는 곳에서 지평선까지의 지면상 거리는 약 4.65킬로미터입니다. 이는 직선 거리와 거의 동일한 값을 가지며, 이는 눈높이가 지구 반지름에 비해 매우 작기 때문에 발생하는 결과입니다.
Claude 3.5 Sonnet
아, 매우 좋은 지적이십니다. 제가 실수를 했네요. 당신이 말씀하신 대로 제가 계산한 것은 관찰자의 눈에서 지평선까지의 직선 거리였습니다.
지면을 따라 측정한 관찰자의 위치에서 지평선까지의 곡선 거리를 구하는 것이 더 정확한 접근 방법이겠네요. 이를 위해 우리는 지구 표면의 호(arc)의 길이를 계산해야 합니다.
이 곡선 거리를 s라고 하면, 공식은 다음과 같습니다:
s = R * θ
여기서 R은 지구의 반경이고, θ는 중심각(라디안)입니다.
중심각 θ는 다음과 같이 계산할 수 있습니다:
θ = arccos(R / (R + h))
여기서 h는 관찰자의 눈높이입니다.
이제 값을 대입해 보겠습니다:
R = 6,371,000 m
h = 1.7 mθ = arccos(6,371,000 / (6,371,000 + 1.7))
≈ 0.00130 라디안이제 호의 길이 s를 계산할 수 있습니다:
s = 6,371,000 * 0.00130
≈ 8,282 m
≈ 8.28 km따라서, 성인의 눈높이(170cm)에서 지면을 따라 측정한 지평선까지의 거리는 약 8.28 km입니다.
이 결과는 이전에 계산한 직선 거리(4.65 km)보다 상당히 큽니다. 이는 지구의 곡률 때문입니다. 지면을 따라 가는 거리가 직선 거리보다 훨씬 길어지는 것이죠.
다시 한 번 좋은 지적 감사드립니다. 이런 세부사항을 놓치지 않는 것이 정확한 계산에 매우 중요합니다.
기껏해야 1mm 정도의 차이긴 합니다.
-
세상의모든계산기
ChatGPT-4o 가 답변을 잘 하는 것 같으니 추가로 물어봤습니다.
좋아. 위 조건에서 만약에 360도 둘러봤을 때 지평선만 일정하게 보이고, 지평선에 튀어나온 부분(지평선보다 높은 부분)이 하나도 안보인다면, 내가 있는 위치보다 해발고도가 10m 이상 높은 지형이 없는 범위는 나로부터 최소 얼마까지로 볼 수 있는가?
지평선에서 일정한 높이 이상의 지형이 보이지 않는 범위를 계산하려면, 지평선과 관찰자가 서 있는 위치 사이의 지형 높이를 고려해야 합니다. 관찰자의 눈높이에서 지평선까지의 거리와 지구의 곡률을 이용하여 이 범위를 추정할 수 있습니다.
1. **관찰자의 높이에서 지평선까지의 거리 계산**:
- 관찰자의 눈높이: \(h = 1.7\) 미터
- 지구 반지름: \(R = 6371\) 킬로미터
- 직선 거리 \(d \approx \sqrt{2Rh} \approx 4.65\) 킬로미터 (이전 계산 참조)2. **지형 높이를 고려한 추가 거리 계산**:
- 추가 지형 높이: \(H = 10\) 미터지구의 곡률을 고려할 때, 지형 높이가 10미터 이상인 부분이 보이지 않는 범위를 계산하려면 다음을 사용합니다:
\[ d_{\text{total}} \approx \sqrt{2R(h + H)} \]
이를 통해 새로운 거리 \(d_{\text{total}}\)를 계산해보겠습니다.
해발고도가 10미터 이상 높은 지형이 보이지 않는 범위는 약 12.21킬로미터입니다. 이는 관찰자의 눈높이에서 지평선까지의 거리에 추가적인 10미터 높이를 고려한 거리입니다.
[>_]
import math # Given values h = 1.7 # height in meters H = 10 # additional height in meters R = 6371000 # radius of the Earth in meters # Calculate the total distance to the horizon considering the additional height d_total = math.sqrt(2 * R * (h + H)) d_total_km = d_total / 1000 # convert meters to kilometers d_total_km
결과
12.209889434388831
-
세상의모든계산기
이건 ChatGPT가 분석에 실패한게 아닌가 합니다.
이건 10m 높이의 산이 있다고 할 때, 그 지점에서 수직 높이로 잰 건 아니고, 데카르트 좌표상 y축으로 수직인 거라 차이가 살짝은 있겠지만,
그다지 큰 영향은 없을 거라고 추정되는데 16km 근방이 답일 것 같습니다만...반지름이 r+10m 인 원과 시선이 만드는 직선의 교점이 맞는건가?
이 점까지의 각도를 찾고 호의 길이를 구하면
세상의모든계산기 님의 최근 댓글
수치해석 방법 method 를 강제로 선택할 수 있으면 좋을텐데... 위의 스샷을 보면 되는 듯 하면서도 아래 스샷을 보면 안되는 것 같기도 합니다. solve(Expr,[Var]) csolve(LstEq,LstVar) nSolve(Expr,Var,[Guess or Interval],[Method]) deSolve(Eq,[TimeVar],FncVar) linsolve(LstLinEq,LstVar) fsolve(Expr,Var,[Guess or Interval],[Method]) 2025 10.17 종합해서 답변을 드리면 HP Prime 에 solve 에서 변수명에 구간을 입력하면 수치해석 방식으로 bisection 을 사용함. 이 bisection 방식은 해의 좌-우 부호가 서로 바뀌어야만 해를 인식하고 해의 좌-우 부호가 같으면 해를 인식하지 못합니다. 이 때문에 본문 sin 의 예나 아래 사진의 예에서는 해를 인식하지 못하는 것으로 보입니다. 2025 10.17 Gemini-2.5-pro 답변 ✦ 현대 컴퓨터 대수 시스템(CAS) 계산기에 탑재된 solve 기능의 일반적인 내부 동작 원리에 대해 설명해 드리겠습니다. 현대 CAS의 solve 기능은 단순히 하나의 알고리즘으로 작동하는 것이 아니라, 마치 '순수 수학자'와 '문제 해결 공학자'가 협력하는 것처럼, 여러 단계에 걸친 정교한 '하이브리드(Hybrid)' 방식으로 동작합니다. solve 함수의 작동 과정 1단계: 기호적 해법 (Symbolic Solver) - '순수 수학자'의 접근 계산기는 가장 먼저 방정식을 대수적으로, 즉 정확한 수학적 해를 찾으려고 시도합니다. 이 단계는 마치 사람이 공식을 이용해 문제를 푸는 과정과 같습니다. 1. 방정식 분석: solve 명령을 받으면, 시스템은 먼저 입력된 방정식의 구조를 분석합니다. (예: 이것이 다항식인가? 삼각방정식인가? 로그방정식인가?) 2. 규칙 기반 풀이: 분석된 구조에 따라, 시스템은 내장된 방대한 수학 규칙 라이브러리를 적용합니다. * 선형/이차 방정식: ax+b=c 나 ax²+bx+c=0 같은 형태는 이항, 인수분해, 근의 공식 등을 이용해 즉시 풉니다. * 고차 다항식: 인수분해, 조립제법 등의 규칙을 적용하여 유리수 해를 찾습니다. * 삼각방정식: sin(x) = 0.5 와 같은 경우, x = nπ + (-1)ⁿ * (π/6) 와 같이 주기성을 고려한 일반해 공식을 적용합니다. * 기타: 로그, 지수 법칙 등 해당 방정식에 맞는 대수적 풀이법을 총동원합니다. 3. 결과: 이 단계에서 해를 찾으면, 1.414... 와 같은 근사값이 아닌 √2 나 π/3 와 같은 정확한 기호 형태의 해를 반환합니다. > 강점: 수학적으로 완벽하고 정확한 해를 제공합니다. > 한계: 대수적인 풀이법이 알려져 있지 않은 방정식(예: cos(x) = x 또는 eˣ = x+2)은 풀 수 없습니다. --- 2단계: 수치적 해법 (Numerical Solver) - '문제 해결 공학자'의 접근 만약 1단계의 '순수 수학자'가 "이건 공식으로 풀 수 없어"라고 결론 내리면, solve 기능은 포기하지 않고 2단계인 '문제 해결 공학자'에게 문제를 넘깁니다. 이 단계의 목표는 정확한 해는 아니더라도, 매우 정밀한 근사해를 찾는 것입니다. 1. 반복적 탐색: 수치적 해법은 방정식을 직접 푸는 것이 아니라, 해가 있을 만한 지점에서부터 시작하여 반복적인 계산을 통해 해에 점점 더 가까워지는 방식을 사용합니다. * 적당한 값을 추측해서 대입해 봅니다. * 결과가 0보다 큰지 작은지에 따라, 다음 추측값을 어느 방향으로 수정할지 결정합니다. * 이 과정을 수없이 반복하여 오차가 거의 0에 가까워질 때까지 해를 좁혀나갑니다. 2. 핵심 알고리즘: 이때 사용되는 대표적인 알고리즘은 다음과 같습니다. * 뉴턴-랩슨법 (Newton-Raphson Method): 미분(접선)을 이용하여 매우 빠른 속도로 해에 수렴하는 강력한 방법입니다. * 이분법 (Bisection Method): 해가 존재하는 특정 구간을 계속 절반으로 나누어 범위를 좁혀나가는 방식으로, 속도는 느리지만 안정적으로 해를 찾을 수 있습니다. 3. 결과: 이 단계가 성공하면, 시스템은 0.739085133215 와 같이 소수점 아래 여러 자리까지 표현되는 매우 정밀한 부동소수점 형태의 근사해를 반환합니다. > 강점: 대수적으로 풀 수 없는 복잡한 방정식의 해도 근사적으로 찾아낼 수 있습니다. > 한계: 근사해이며, 알고리즘의 특성상 특정 조건(예: 해가 중근을 갖는 경우)에서는 해를 찾지 못하고 실패할 수도 있습니다. 결론: 왜 하이브리드 방식인가? 분석 → 기호적 풀이 시도 → (실패 또는 불가능 시) → 수치적 풀이로 전환 이처럼 현대 CAS의 solve 기능은 정확성(기호적 해법)과 범용성(수치적 해법)이라는 두 마리 토끼를 모두 잡기 위해 설계된 정교한 협력 시스템입니다. 먼저 가장 이상적인 '정확한 해'를 추구하되, 그것이 불가능할 경우 차선책으로 '정밀한 근사해'라도 찾아내어 사용자에게 최대한의 결과를 제공하는 것입니다. 2025 10.17 hp prime 이 solve 함수에서 해를 찾는데 어떤 방법(method)을 사용하는지 공식적인 무서로 정확하게 파악되진 않습니다. 2025 10.17 참고 x=guess 는 iterative 방식(일반적으로는 newton's method를 의미함)을 x=xmin .. xmax 는 bisection 방식을 사용하는 듯 합니다. // 구간지정 개념과는 차이가 있는 듯? 2025 10.17