- 세상의 모든 계산기 자유(질문) 게시판 팁 & 정보 ()
[윈도우] CPU 점유율을 제한하는 프로그램 BES
1. 프로그램 설명
- 이름 : BES – Battle Encoder Shirase
- 설명 : BES is a small tool that throttles the CPU usage of the process you “target”: for instance, you can limit the CPU usage of a process which would use CPU 100%, down to 50% (or any percentage you’d like). With this, you can use other programs comfortably while doing something CPU-intensive in the background.
(요약 : process 별로 CPU 사용률을 지정해서 낮출 수 있음. 최대 3개 control) - 사이트 주소 : http://mion.faireal.net/BES/#download
- 한글 설명글 : http://www.parkoz.com/zboard/view.php?id=my_tips&no=12346
2. 사용기
- 바둑 프로그램 AI 가 수를 읽으면서 CPU 사용하는 것을 제한하려고 사용해 봤습니다. -50% 걸었는데, 윈도우 작업관리자 상에서 바둑 프로그램이 CPU 점유율이 40% 수준으로 나옵니다. (관리자 권한으로 실행하세요)
- 칼같이 40%를 유지하는 게 아니고 약간 출렁임?이 있는 것 같네요.
- 윈도우 10에서 돌렸는데 잘 되었습니다. 괜찮은 프로그램인 것 같습니다.
- 오직 exe 실행파일만 콘트롤이 되는 듯 합니다.
댓글2
-
세상의모든계산기
윈도우 작업 관리자에서 (프로세서) "선호도 설정" 하는 것으로도 유사한 효과를 볼 수 있습니다.
체크해제하면 해당 CPU(쓰레드)는 사용하지 않습니다.
세상의모든계산기 님의 최근 댓글
예시11) 선형 연립방정식에서 답이 false 로 나올 때 https://allcalc.org/55823 2025 10.22 approx(참 해) 값이 이상하게 튀는 것 같아서 AI를 이용해 (python 으로) 구해보았습니다. * python 의 유효자릿수가 nspire 의 유효자릿수(14자리~15자리)보다 더 길기 때문에 시도하였습니다. ** 원래는 wolfram alpha 로 구해보려고 했는데, 울프람에서는 수식 길이가 너무 길다고 거부하는 바람에 포기하였습니다. 그 결과, AI approx(참 해) 값은 정상 범주에 포함되었고, 이는 solve()로 구한 대부분의 결과값과 유사하였습니다. 그럼 nspire 의 approx(참 해)는 왜 튀었나? 참 해에 더하기,빼기,곱하기,나누기 가 너무 많이 포함되어 있다보니, 모두 계산하고 나면 오차가 누적&증폭되어 버리는 것 같습니다. 그래서 오히려 solve의 numeric 한 접근보다도 더 큰 오차가 발생한 듯 하고, 그래서 적절한 해의 x 구간을 벗어나버린 듯 합니다. 그것이 처음의 solve 에서 false 를 이끌어낸 주 원인이 아니었을까요? (추정) 2025 10.21 그래프로 확인 그래프 함수로 지정하고, 매우 좁은 구간으로 그래프를 확대해 보면 불연속적인 그래프 모습이 확인됩니다. 이것은 한계 digits(15자리) 이상을 처리하지 못하기 때문일 것이구요. 다만 특이한 점은, 그래프상으로 교점에 해당하는 구간이 73.049507058477≤x≤73.049507058484 사이로 나오는데 -> 이 구간은 'solve에서 여러 방법으로 직접 구해진 해들'은 포함되는 구간입니다. -> 하지만, '참값인 해를 계산기로 구한 appprox 값 x=73.049507058547'은 포함되지 않는 구간입니다. 2025 10.21 tns 파일 첨부 sol_num_vs_exact.tns 2025 10.21 검증하면 1번 식을 x에 대해 정리하고, → 그 x 값을 2번 식에 대입해 넣으면 → 그 결과로 x는 사라지고 y에 대한 식이 되니, y에 대해 정리하면 참값 y를 얻음. 얻은 y의 참값을 처음 x에 대해 정리한 1번식에 대입하면 참 값 x를 얻음. 구해진 참값의 근사값을 구하면 x=73.049507058547 and y=23.747548955927 참 값을 approx() 로 변환한 근사값은 원래 방정식 모두를 만족할 수 없지만, linsolve() 로 찾은 근사값과, AI로 참 값을 근사변환한 값은 원래 방정식 모두를 만족할 수 있습니다. 2025 10.21