• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
      • 세상의 모든 계산기  
        • 자유(질문) 게시판  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학
    • "행렬에서 대각선, 행, 또는 열 중 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없다?

    • Profile
      • 세상의모든계산기
        *.105.205.197
      • 2024.09.20 - 12:42 2024.09.20 - 12:02  143  1

    이 명제는 거짓입니다.

    행렬에서 행, 또는 열에서 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없습니다. 

    하지만 대각선 성분이 0인 경우에는 역행렬을 가질 수 있습니다. 

    image.png

     

     행렬의 기본 개념


    역행렬이 존재하려면, 행렬이 가역이어야 합니다. 즉, 행렬 \( A \)에 대해 역행렬 \( A^{-1} \)가 존재하려면 \( A \)는 정사각 행렬이고, 행렬식(det \( A \))이 0이 아니어야 합니다. 행렬식이 0이면 행렬은 특이 행렬로 간주되어 역행렬을 가질 수 없습니다.

     

     1. 행 또는 열이 모두 0인 경우


    행이나 열이 0인 경우, 해당 행렬은 선형 독립성을 상실합니다. 예를 들어, \( n \times n \) 행렬의 어느 한 행이나 열이 0이면, 그 행렬은 완전히 0으로만 구성된 벡터를 포함하고 있다는 의미입니다. 이는 행렬의 행렬식이 0임을 의미합니다. 즉, 역행렬이 존재하지 않습니다.

     예시:  
    \[
    A = \begin{pmatrix} 
    1 & 2 & 3 \\ 
    0 & 0 & 0 \\ 
    4 & 5 & 6 
    \end{pmatrix}
    \]
    이 행렬은 두 번째 행이 모두 0입니다. 이 경우, \( A \)의 행렬식은 0이므로 역행렬이 존재하지 않습니다.

     

     2. 대각선 성분이 모두 0인 경우

     

    그러나 대각선이 모두 0이라고 해서 반드시 역행렬이 존재하지 않는 것은 아닙니다.

     

     반대 예시:  
    \[
    A = \begin{pmatrix} 
    0 & 1 \\ 
    1 & 0  \\ 
    \end{pmatrix}
    \]
    이 경우, 행렬식 det(A) = 0×0 - 1×1 = -1 이므로 역행렬이 있습니다. 

    \[
    A^{-1} = \begin{pmatrix} 
    0 & 1 \\ 
    1 & 0  \\ 
    \end{pmatrix}
    \]
     

     

     

     

     결론


    - 행이 한 줄 모두 0이면 행렬은 역행렬이 없습니다.
    - 열이 한 줄 모두 0이어도 마찬가지로 역행렬이 없습니다.
    - 대각선이 한 줄 모두 0인 경우에는 역행렬이 있을 수도 있습니다. 

    따라서 "대각선이든 행이든 열이든 한줄이 0이면 다 역행렬 없음"이라는 명제는 거짓입니다.

    0
    0
    Attached file
    image.png 3.4KB 20
    이 게시물을..
    • 세상의모든계산기 세상의모든계산기 Lv. 25

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

     댓글 1

      • Profile
      • 세상의모든계산기 (*.105.205.197) 2024.09.20 12:07 #comment_47542

        행이나 열이 0으로만 구성된다는 것은 행렬이 가지고 있는 정보가 손실된다는 의미입니다.

        이를 선형 독립성과 연결해서 더 구체적으로 설명해볼게요.

         

         1. 선형 독립성과 선형 종속성


        선형 독립성이란, 여러 벡터가 있을 때 그 벡터들이 서로 독립적으로 정보를 전달한다는 의미입니다. 즉, 하나의 벡터가 나머지 벡터들의 선형 결합(곱한 뒤 더한 값)으로 표현될 수 없다면, 그 벡터들은 선형 독립입니다.

        선형 종속성은 그 반대입니다. 벡터들 중 하나가 나머지 벡터들로부터 생성될 수 있다면, 그 벡터들은 선형 종속입니다.

         예시:
        벡터 \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_2} = (2, 4)\)를 생각해봅시다.
        \(\mathbf{v_2}\)는 \(\mathbf{v_1}\)의 2배입니다. 즉, \(\mathbf{v_2}\)는 \(\mathbf{v_1}\)에 의해 표현될 수 있으므로, 이 두 벡터는 선형 종속입니다.

        반면, \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_3} = (3, 1)\)는 서로 독립적입니다. \(\mathbf{v_3}\)를 \(\mathbf{v_1}\)로 표현할 수 없기 때문에 선형 독립입니다.

         

         2. 행이나 열이 0일 때의 의미


        이제 행렬에서 행이나 열이 0인 경우를 생각해 봅시다.

         

         (1) 행이 0인 경우
        행렬에서 행은 하나의 벡터처럼 볼 수 있습니다. 만약 행렬 \( A \)의 어떤 행이 \( 0 \)으로만 이루어져 있다면, 그 행은 다른 행들과 어떤 관계도 없으며, 그 행 자체는 아무 정보도 전달하지 않습니다. 즉, 그 행은 선형 독립성을 상실하게 됩니다.

        선형 독립성은 행렬의 랭크(rank)와 관련이 있는데, 행렬의 랭크는 행렬에서 선형 독립적인 행 또는 열의 수를 의미합니다. 어떤 행이 0이면, 그 행은 독립적이지 않으므로 랭크가 줄어들고, 결과적으로 역행렬을 구할 수 없게 됩니다.

         예시:
        \[
        A = \begin{pmatrix}
        1 & 2 & 3 \\
        0 & 0 & 0 \\
        4 & 5 & 6
        \end{pmatrix}
        \]
        위 행렬에서 두 번째 행은 \( 0 \)으로만 이루어져 있습니다. 이 행은 다른 행들과 어떤 관계도 없으며, 아무런 정보를 주지 않습니다. 따라서 이 행렬은 선형 독립성을 상실한 것이고, 역행렬이 존재하지 않습니다.

         

         (2) 열이 0인 경우
        열이 0인 경우도 마찬가지입니다. 행렬의 어떤 열이 모두 0이면, 그 열은 다른 열들과 독립적으로 존재하지 않고, 그 열이 제공하는 정보가 전혀 없기 때문에 역행렬을 구할 수 없습니다. 이 역시 선형 독립성의 상실로 이어집니다.

         예시:
        \[
        B = \begin{pmatrix}
        1 & 0 & 3 \\
        4 & 0 & 6 \\
        7 & 0 & 9
        \end{pmatrix}
        \]
        이 행렬에서 두 번째 열은 모두 0입니다. 따라서 이 열은 다른 열들과 선형 독립적이지 않으며, 이 행렬의 행렬식은 0이 되어 역행렬이 없습니다.

         

         3. 요약


        - 행 또는 열이 0이라는 것은 그 벡터가 아무 정보도 전달하지 않음을 의미합니다.
        - 행렬의 행이나 열이 0이면, 그 행렬은 선형 독립성을 상실하고, 행렬식이 0이 되며, 역행렬이 존재하지 않습니다.

        0
        댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • 목록 목록
    • 목록
    1
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.