- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
Minigo on Google Edge TPU
https://github.com/tensorflow/minigo/issues/824
오래된(2019년 5월~6월) 얘기긴 한데 오랫만에 찾아봐서 이제서야 올려보네요.
시판중인 구글 Edge TPU를 이용해 텐서플로우를 사용하는 미니고가 돌아간다는 얘기구요.
오리지널 미니고 엔진이 그대로 돌아가는 것은 아니고 FP->Integer 로 컨버팅하긴 해야한다는데 뭐 어려운 것은 아닌 것 같구요.
(그렇다고 릴라제로가 돌아가거나 하진 않습니다.)
GPU와 비교
Full size model (19 trunk layers, 256 filter width):
- GPU: inference for one position takes 14ms.
- Edge TPU: inference for one position takes 38ms.
With 15 trunk layers, 160 filter width:
- GPU: one position takes 5.1ms.
- Edge TPU: one position takes 6.7ms.
With 19 trunk layers, 128 filter width:
- GPU: one position takes 3.8ms.
- Edge TPU: one position takes 4.0ms.
GPU 모델은 NVIDIA Quadro M2000 (대략 $400) 이고, TPU는 Dev Board인지 Accelerator인지 모르겠습니다(뭐든 상관이 없으려나요?) 비교성능상 비슷한데, 상황(세팅)에 따라 우위가 왔다갔다 하는 정도인 듯 합니다.
그와 관련된 (따라해 볼 수 있는) Guide 사이트도 있으니 참고하시구요.
https://coral.ai/projects/minigo
Run multiple models with multiple Edge TPUs 도 가능하다니...
https://coral.ai/docs/edgetpu/multiple-edgetpu/
미니고에도 적용할 수 있다면 상당한 바둑 AI머쉰이 탄생할 수도 있겠네요.
댓글2
-
세상의모든계산기
NVIDIA Quadro M2000 관련하여서는 일반유저가 사용하는 GPU(GTX, RTX 등등) 와 비교 데이터가 없어서 직접 비교가 어렵네요.
ㄴ 출처 : https://techgage.com/article/nvidia-quadro-m2000-workstation-graphics-card-review/2/Autodesk 3ds Max 2016에서는 Geforce TITAN X(12GB) 의 1/3 수준성능을 보여주네요.
세상의모든계산기 님의 최근 댓글
종합해서 답변을 드리면 HP Prime 에 solve 에서 변수명에 구간을 입력하면 수치해석 방식으로 bisection 을 사용함. 이 bisection 방식은 해의 좌-우 부호가 서로 바뀌어야만 해를 인식하고 해의 좌-우 부호가 같으면 해를 인식하지 못합니다. 이 때문에 본문 sin 의 예나 아래 사진의 예에서는 해를 인식하지 못하는 것으로 보입니다. 2025 10.17 Gemini-2.5-pro 답변 ✦ 현대 컴퓨터 대수 시스템(CAS) 계산기에 탑재된 solve 기능의 일반적인 내부 동작 원리에 대해 설명해 드리겠습니다. 현대 CAS의 solve 기능은 단순히 하나의 알고리즘으로 작동하는 것이 아니라, 마치 '순수 수학자'와 '문제 해결 공학자'가 협력하는 것처럼, 여러 단계에 걸친 정교한 '하이브리드(Hybrid)' 방식으로 동작합니다. solve 함수의 작동 과정 1단계: 기호적 해법 (Symbolic Solver) - '순수 수학자'의 접근 계산기는 가장 먼저 방정식을 대수적으로, 즉 정확한 수학적 해를 찾으려고 시도합니다. 이 단계는 마치 사람이 공식을 이용해 문제를 푸는 과정과 같습니다. 1. 방정식 분석: solve 명령을 받으면, 시스템은 먼저 입력된 방정식의 구조를 분석합니다. (예: 이것이 다항식인가? 삼각방정식인가? 로그방정식인가?) 2. 규칙 기반 풀이: 분석된 구조에 따라, 시스템은 내장된 방대한 수학 규칙 라이브러리를 적용합니다. * 선형/이차 방정식: ax+b=c 나 ax²+bx+c=0 같은 형태는 이항, 인수분해, 근의 공식 등을 이용해 즉시 풉니다. * 고차 다항식: 인수분해, 조립제법 등의 규칙을 적용하여 유리수 해를 찾습니다. * 삼각방정식: sin(x) = 0.5 와 같은 경우, x = nπ + (-1)ⁿ * (π/6) 와 같이 주기성을 고려한 일반해 공식을 적용합니다. * 기타: 로그, 지수 법칙 등 해당 방정식에 맞는 대수적 풀이법을 총동원합니다. 3. 결과: 이 단계에서 해를 찾으면, 1.414... 와 같은 근사값이 아닌 √2 나 π/3 와 같은 정확한 기호 형태의 해를 반환합니다. > 강점: 수학적으로 완벽하고 정확한 해를 제공합니다. > 한계: 대수적인 풀이법이 알려져 있지 않은 방정식(예: cos(x) = x 또는 eˣ = x+2)은 풀 수 없습니다. --- 2단계: 수치적 해법 (Numerical Solver) - '문제 해결 공학자'의 접근 만약 1단계의 '순수 수학자'가 "이건 공식으로 풀 수 없어"라고 결론 내리면, solve 기능은 포기하지 않고 2단계인 '문제 해결 공학자'에게 문제를 넘깁니다. 이 단계의 목표는 정확한 해는 아니더라도, 매우 정밀한 근사해를 찾는 것입니다. 1. 반복적 탐색: 수치적 해법은 방정식을 직접 푸는 것이 아니라, 해가 있을 만한 지점에서부터 시작하여 반복적인 계산을 통해 해에 점점 더 가까워지는 방식을 사용합니다. * 적당한 값을 추측해서 대입해 봅니다. * 결과가 0보다 큰지 작은지에 따라, 다음 추측값을 어느 방향으로 수정할지 결정합니다. * 이 과정을 수없이 반복하여 오차가 거의 0에 가까워질 때까지 해를 좁혀나갑니다. 2. 핵심 알고리즘: 이때 사용되는 대표적인 알고리즘은 다음과 같습니다. * 뉴턴-랩슨법 (Newton-Raphson Method): 미분(접선)을 이용하여 매우 빠른 속도로 해에 수렴하는 강력한 방법입니다. * 이분법 (Bisection Method): 해가 존재하는 특정 구간을 계속 절반으로 나누어 범위를 좁혀나가는 방식으로, 속도는 느리지만 안정적으로 해를 찾을 수 있습니다. 3. 결과: 이 단계가 성공하면, 시스템은 0.739085133215 와 같이 소수점 아래 여러 자리까지 표현되는 매우 정밀한 부동소수점 형태의 근사해를 반환합니다. > 강점: 대수적으로 풀 수 없는 복잡한 방정식의 해도 근사적으로 찾아낼 수 있습니다. > 한계: 근사해이며, 알고리즘의 특성상 특정 조건(예: 해가 중근을 갖는 경우)에서는 해를 찾지 못하고 실패할 수도 있습니다. 결론: 왜 하이브리드 방식인가? 분석 → 기호적 풀이 시도 → (실패 또는 불가능 시) → 수치적 풀이로 전환 이처럼 현대 CAS의 solve 기능은 정확성(기호적 해법)과 범용성(수치적 해법)이라는 두 마리 토끼를 모두 잡기 위해 설계된 정교한 협력 시스템입니다. 먼저 가장 이상적인 '정확한 해'를 추구하되, 그것이 불가능할 경우 차선책으로 '정밀한 근사해'라도 찾아내어 사용자에게 최대한의 결과를 제공하는 것입니다. 2025 10.17 hp prime 이 solve 함수에서 해를 찾는데 어떤 방법(method)을 사용하는지 공식적인 무서로 정확하게 파악되진 않습니다. 2025 10.17 참고 x=guess 는 iterative 방식(일반적으로는 newton's method를 의미함)을 x=xmin .. xmax 는 bisection 방식을 사용하는 듯 합니다. // 구간지정 개념과는 차이가 있는 듯? 2025 10.17 HP Prime 에 적용 방법1) ㄴ 검증 필요해서 번거로움 방법2) ㄴ 1에 너무 가까우면 안나오고 적당히 떨어져 있어야 하는 듯 함. ㄴ 오차가 약간 발생함. 방법3) ㄴ TRACE : 정밀하지 않음 ㄴ Intersection : 약간 시간 걸림 & 오차 발생할 수 있음. 2025 10.17