• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 ()
    • 푸리에 급수 테이블 , 푸리에 변환 테이블, Fourier Series Table, Fourier Transform Table

    • Profile
      • 세상의모든계산기
      • 2024.11.15 - 00:05 2024.11.14 - 11:27 438

    출처 : https://ena.etsmtl.ca/pluginfile.php/137982/mod_resource/content/8/Fourier-table.pdf

     

    Fourier-table_1.png

    Fourier-table_2.png

     

     


     

    출처 : https://en.wikipedia.org/wiki/Fourier_transform

     

    Functional relationships, one-dimensional

     

    The Fourier transforms in this table may be found in [Erdélyi 1954] or [Kammler 2000, appendix].

      Function Fourier transform
    unitary, ordinary frequency
    Fourier transform
    unitary, angular frequency
    Fourier transform
    non-unitary, angular frequency
    Remarks
      \[f(x)\] \[\begin{align} &\widehat{f}(\xi) \triangleq \widehat {f_1}(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}\] \[\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_2}(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}\] \[\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_3}(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}\] Definitions
    101 \[a\, f(x) + b\, g(x)\] \[a\, \widehat{f}(\xi) + b\, \widehat{g}(\xi)\] \[a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\] \[a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\] Linearity
    102 \[f(x - a)\] \[e^{-i 2\pi \xi a} \widehat{f}(\xi)\] \[e^{- i a \omega} \widehat{f}(\omega)\] \[e^{- i a \omega} \widehat{f}(\omega)\] Shift in time domain
    103 \[f(x)e^{iax}\] \[\widehat{f} \left(\xi - \frac{a}{2\pi}\right)\] \[\widehat{f}(\omega - a)\] \[\widehat{f}(\omega - a)\] Shift in frequency domain, dual of 102
    104 \[f(a x)\] \[\frac{1}{|a|} \widehat{f}\left( \frac{\xi}{a} \right)\] \[\frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\] \[\frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\] Scaling in the time domain. If \[{{abs|a}}\] is large, then \[f(ax)\] is concentrated around 0 and
    \[\frac{1}{|a|}\hat{f} \left( \frac{\omega}{a} \right)\]
    spreads out and flattens.
    105 \[\widehat {f_n}(x)\] \[\widehat {f_1}(x) \ \stackrel{\mathcal{F}_1}{\longleftrightarrow}\ f(-\xi)\] \[\widehat {f_2}(x) \ \stackrel{\mathcal{F}_2}{\longleftrightarrow}\ f(-\omega)\] \[\widehat {f_3}(x) \ \stackrel{\mathcal{F}_3}{\longleftrightarrow}\ 2\pi f(-\omega)\] The same transform is applied twice, but x replaces the frequency variable (ξ or ω) after the first transform.
    106 \[\frac{d^n f(x)}{dx^n}\] \[(i 2\pi \xi)^n \widehat{f}(\xi)\] \[(i\omega)^n \widehat{f}(\omega)\] \[(i\omega)^n \widehat{f}(\omega)\] nth-order derivative.
    As \[f\] is a [[Schwartz space|Schwartz function]]
    106.5 \[\int_{-\infty}^{x} f(\tau) d \tau\] \[\frac{\widehat{f}(\xi)}{i 2 \pi \xi} + C \, \delta(\xi)\] \[\frac{\widehat{f} (\omega)}{i\omega} + \sqrt{2 \pi} C \delta(\omega)\] \[\frac{\widehat{f} (\omega)}{i\omega} + 2 \pi C \delta(\omega)\] Integration.[1] Note: \[\delta\] is the [[Dirac delta function]] and \[C\] is the average ([[DC component|DC]]) value of \[f(x)\] such that \[\int_{-\infty}^\infty (f(x) - C) \, dx = 0\]
    107 \[x^n f(x)\] \[\left (\frac{i}{2\pi}\right)^n \frac{d^n \widehat{f}(\xi)}{d\xi^n}\] \[i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}\] \[i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}\] This is the dual of 106
    108 \[(f * g)(x)\] \[\widehat{f}(\xi) \widehat{g}(\xi)\] \[\sqrt{2\pi}\ \widehat{f}(\omega) \widehat{g}(\omega)\] \[\widehat{f}(\omega) \widehat{g}(\omega)\] The notation \[f * g\] denotes the [[convolution]] of \[f\] and \[g\] — this rule is the [[convolution theorem]]
    109 \[f(x) g(x)\] \[\left(\widehat{f} * \widehat{g}\right)(\xi)\] \[ \frac{1}{\sqrt{2\pi}} \left(\widehat{f} * \widehat{g}\right)(\omega) \] \[\frac{1}{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\] This is the dual of 108
    110 For \[f(x)\] purely real \[\widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}\] \[\widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\] \[\widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\] Hermitian symmetry. \[\overline{z}\] indicates the [[complex conjugate]].
    113 For \[f(x)\] purely imaginary \[\widehat{f}(-\xi) = -\overline{\widehat{f}(\xi)}\] \[\widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\] \[\widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\] \[\overline{z}\] indicates the [[complex conjugate]].
    114 \[\overline{f(x)}\] \[\overline{\widehat{f}(-\xi)}\] \[\overline{\widehat{f}(-\omega)}\] \[\overline{\widehat{f}(-\omega)}\] [[Complex conjugation]], generalization of 110 and 113
    115 \[f(x) \cos (a x)\] \[\frac{\widehat{f}\left(\xi - \frac{a}{2\pi}\right)+\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2}\] \[\frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\] \[\frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\] This follows from rules 101 and 103 using [[Euler's formula]]:
    \[\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.\]
    116 \[f(x)\sin( ax)\] \[\frac{\widehat{f}\left(\xi-\frac{a}{2\pi}\right)-\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2i}\] \[\frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}\] \[\frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}\] This follows from 101 and 103 using [[Euler's formula]]:
    \[\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.\]

    [1] The Integration Property of the Fourier Transform

      Function Fourier transform
    unitary, ordinary frequency
    Fourier transform
    unitary, angular frequency
    Fourier transform
    non-unitary, angular frequency
    Remarks
      \[ f(x) \] \[ \begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align} \] \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] Definitions
    201 \[ \operatorname{rect}(a x) \] \[ \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\xi}{a}\right) \] \[ \frac{1}{\sqrt{2 \pi a^2}}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right) \] \[ \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right) \] The rectangular pulse and the normalized sinc function, here defined as \[ 1=\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x} \]
    202 \[ \operatorname{sinc}(a x) \] \[ \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\xi}{a} \right) \] \[ \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right) \] \[ \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right) \] Dual of rule 201. The rectangular function is an ideal low-pass filter, and the sinc function is the non-causal impulse response of such a filter. The sinc function is defined here as \[ 1=\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x} \]
    203 \[ \operatorname{sinc}^2 (a x) \] \[ \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\xi}{a} \right) \] \[ \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) \] \[ \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) \] The function \[ \text{tri}(x) \] is the triangular function
    204 \[ \operatorname{tri} (a x) \] \[ \frac{1}{|a|}\, \operatorname{sinc}^2 \left( \frac{\xi}{a} \right) \] \[ \frac{1}{\sqrt{2\pi a^2}} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) \] \[ \frac{1}{|a|} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) \] Dual of rule 203.
    205 \[ e^{- a x} u(x) \] \[ \frac{1}{a + i 2\pi \xi} \] \[ \frac{1}{\sqrt{2 \pi} (a + i \omega)} \] \[ \frac{1}{a + i \omega} \] The function \[ u(x) \] is the Heaviside unit step function and \[ a > 0 \].
    206 \[ e^{-\alpha x^2} \] \[ \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{(\pi \xi)^2}{\alpha}} \] \[ \frac{1}{\sqrt{2 \alpha}}\, e^{-\frac{\omega^2}{4 \alpha}} \] \[ \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{\omega^2}{4 \alpha}} \] This shows that, for the unitary Fourier transforms, the Gaussian function \[ e^{−αx^2} \] is its own Fourier transform for some choice of \[ α \]. For this to be integrable we must have \[ Re(α) > 0 \].
    208 \[ e^{-a|x|} \] \[ \frac{2 a}{a^2 + 4 \pi^2 \xi^2} \] \[ \sqrt{\frac{2}{\pi}} \, \frac{a}{a^2 + \omega^2} \] \[ \frac{2a}{a^2 + \omega^{2}} \] For \[ Re(a) > 0 \]. That is, the Fourier transform of a two-sided decaying exponential function is a Lorentzian function.
    209 \[ \operatorname{sech}(a x) \] \[ \frac{\pi}{a} \operatorname{sech} \left( \frac{\pi^2}{ a} \xi \right) \] \[ \frac{1}{a}\sqrt{\frac{\pi}{2}} \operatorname{sech}\left( \frac{\pi}{2 a} \omega \right) \] \[ \frac{\pi}{a}\operatorname{sech}\left( \frac{\pi}{2 a} \omega \right) \] Hyperbolic secant is its own Fourier transform
    210 \[ e^{-\frac{a^2 x^2}2} H_n(a x) \] \[ \frac{\sqrt{2\pi}(-i)^n}{a} e^{-\frac{2\pi^2\xi^2}{a^2}} H_n\left(\frac{2\pi\xi}a\right) \] \[ \frac{(-i)^n}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a\right) \] \[ \frac{(-i)^n \sqrt{2\pi}}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a \right) \] \[ H_n \] is the \[ n \]th-order Hermite polynomial. If \[ a = 1 \] then the Gauss–Hermite functions are eigenfunctions of the Fourier transform operator. For a derivation, see Hermite polynomial. The formula reduces to 206 for \[ n = 0 \].
      Function Fourier transform
    unitary, ordinary frequency
    Fourier transform
    unitary, angular frequency
    Fourier transform
    non-unitary, angular frequency
    Remarks
      \[ f(x) \] \[ \begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align} \] \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] \[ \begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align} \] Definitions
    301 \[ 1 \] \[ \delta(\xi) \] \[ \sqrt{2\pi}\, \delta(\omega) \] \[ 2\pi\delta(\omega) \] The distribution \[ ''δ''(''ξ'') \] denotes the [[Dirac delta function]].
    302 \[ \delta(x) \] \[ 1 \] \[ \frac{1}{\sqrt{2\pi}} \] \[ 1 \] Dual of rule 301.
    303 \[ e^{i a x} \] \[ \delta\left(\xi - \frac{a}{2\pi}\right) \] \[ \sqrt{2 \pi}\, \delta(\omega - a) \] \[ 2 \pi\delta(\omega - a) \] This follows from 103 and 301.
    304 \[ \cos (a x) \] \[ \frac{\delta\left(\xi - \frac{a}{2\pi}\right)+\delta\left(\xi+\frac{a}{2\pi}\right)}{2} \] \[ \sqrt{2 \pi}\,\frac{\delta(\omega-a)+\delta(\omega+a)}{2} \] \[ \pi\left(\delta(\omega-a)+\delta(\omega+a)\right) \] This follows from rules 101 and 303 using [[Euler's formula]]:
    \[ \cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}. \]
    305 \[ \sin( ax) \] \[ \frac{\delta\left(\xi-\frac{a}{2\pi}\right)-\delta\left(\xi+\frac{a}{2\pi}\right)}{2i} \] \[ \sqrt{2 \pi}\,\frac{\delta(\omega-a)-\delta(\omega+a)}{2i} \] \[ -i\pi\bigl(\delta(\omega-a)-\delta(\omega+a)\bigr) \] This follows from 101 and 303 using
    \[ \sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}. \]
    306 \[ \cos \left( a x^2 \right) \] \[ \sqrt{\frac{\pi}{a}} \cos \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) \] \[ \frac{1}{\sqrt{2 a}} \cos \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) \] \[ \sqrt{\frac{\pi}{a}} \cos \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) \] This follows from 101 and 207 using
    \[ \cos(a x^2) = \frac{e^{i a x^2} + e^{-i a x^2}}{2}. \]
    307 \[ \sin \left( a x^2 \right) \] \[ - \sqrt{\frac{\pi}{a}} \sin \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) \] \[ \frac{-1}{\sqrt{2 a}} \sin \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) \] \[ -\sqrt{\frac{\pi}{a}}\sin \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) \] This follows from 101 and 207 using
    \[ \sin(a x^2) = \frac{e^{i a x^2} - e^{-i a x^2}}{2i}. \]
    308 \[ e^{-\pi i\alpha x^2} \] \[ \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\pi \xi^2}{\alpha}} \] \[ \frac{1}{\sqrt{2\pi \alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}} \] \[ \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}} \] Here it is assumed \[ \alpha \] is real. For the case that alpha is complex see table entry 206 above.
    309 \[ x^n \] \[ \left(\frac{i}{2\pi}\right)^n \delta^{(n)} (\xi) \] \[ i^n \sqrt{2\pi} \delta^{(n)} (\omega) \] \[ 2\pi i^n\delta^{(n)} (\omega) \] Here, \[ n \] is a [[natural number]] and \[ ''δ''{{isup|(''n'')}}\left(\xi\right) \] is the \[ n \]th distribution derivative of the Dirac delta function. This rule follows from rules 107 and 301. Combining this rule with 101, we can transform all [[polynomial]]s.
    310 \[ \delta^{(n)}(x) \] \[ (i 2\pi \xi)^n \] \[ \frac{(i\omega)^n}{\sqrt{2\pi}} \] \[ (i\omega)^n \] Dual of rule 309. \[ ''δ''{{isup|(''n'')}}\left(\xi\right) \] is the \[ n \]th distribution derivative of the Dirac delta function. This rule follows from 106 and 302.
    311 \[ \frac{1}{x} \] \[ -i\pi\sgn(\xi) \] \[ -i\sqrt{\frac{\pi}{2}}\sgn(\omega) \] \[ -i\pi\sgn(\omega) \] Here \[ sgn(\xi) \] is the [[sign function]]. Note that \[ \frac{1}{x} \] is not a distribution. It is necessary to use the [[Cauchy principal value]] when testing against [[Schwartz functions]]. This rule is useful in studying the [[Hilbert transform]].
    312 \[ \begin{align} &\frac{1}{x^n} \\ &:= \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log |x| \end{align} \] \[ -i\pi \frac{(-i 2\pi \xi)^{n-1}}{(n-1)!} \sgn(\xi) \] \[ -i\sqrt{\frac{\pi}{2}}\, \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega) \] \[ -i\pi \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega) \] \[ \frac{1}{x^n} \] is the [[homogeneous distribution]] defined by the distributional derivative
    \[ \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log|x| \]
    313 \[ |x|^\alpha \] \[ -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|2\pi\xi|^{\alpha+1}} \] \[ \frac{-2}{\sqrt{2\pi}}\, \frac{\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} \] \[ -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} \] This formula is valid for \[ 0 > \alpha > -1 \]. For \[ \alpha > 0 \] some singular terms arise at the origin that can be found by differentiating 320. If \[ Re \alpha > -1 \], then \[ |x|^\alpha \] is a locally integrable function, and so a tempered distribution. The function \[ \alpha \mapsto |x|^\alpha \] is a holomorphic function from the right half-plane to the space of tempered distributions. It admits a unique meromorphic extension to a tempered distribution, also denoted \[ |x|^\alpha \] for \[ \alpha \neq -1, -3, ... \] (See [[homogeneous distribution]].)
      \[ \frac{1}{\sqrt{|x|}} \] \[ \frac{1}{\sqrt{|\xi|}} \] \[ \frac{1}{\sqrt{|\omega|}} \] \[ \frac{\sqrt{2\pi}}{\sqrt{|\omega|}} \] Special case of 313.
    314 \[ \sgn(x) \] \[ \frac{1}{i\pi \xi} \] \[ \sqrt{\frac{2}{\pi}} \frac{1}{i\omega} \] \[ \frac{2}{i\omega} \] The dual of rule 311. This time the Fourier transforms need to be considered as a [[Cauchy principal value]].
    315 \[ u(x) \] \[ \frac{1}{2}\left(\frac{1}{i \pi \xi} + \delta(\xi)\right) \] \[ \sqrt{\frac{\pi}{2}} \left( \frac{1}{i \pi \omega} + \delta(\omega)\right) \] \[ \pi\left( \frac{1}{i \pi \omega} + \delta(\omega)\right) \] The function \[ u(x) \] is the Heaviside [[Heaviside step function|unit step function]]; this follows from rules 101, 301, and 314.
    316 \[ \sum_{n=-\infty}^{\infty} \delta (x - n T) \] \[ \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left( \xi -\frac{k }{T}\right) \] \[ \frac{\sqrt{2\pi }}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right) \] \[ \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right) \] This function is known as the [[Dirac comb]] function. This result can be derived from 302 and 102, together with the fact that
    \[ \begin{align} & \sum_{n=-\infty}^{\infty} e^{inx} \\ = {}& 2\pi\sum_{k=-\infty}^{\infty} \delta(x+2\pi k) \end{align} \] as distributions.
    317 \[ J_0 (x) \] \[ \frac{2\, \operatorname{rect}(\pi\xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} \] \[ \sqrt{\frac{2}{\pi}} \, \frac{\operatorname{rect}\left(\frac{\omega}{2}\right)}{\sqrt{1 - \omega^2}} \] \[ \frac{2\,\operatorname{rect}\left(\frac{\omega}{2}\right)}{\sqrt{1 - \omega^2}} \] The function \[ J_0(x) \] is the zeroth order [[Bessel function]] of first kind.
    Attached file
    Fourier-table.pdf 56.0KB 20Fourier-table_1.png 353.7KB 16Fourier-table_2.png 351.6KB 23
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    언어의 유형과 만남: 고립어, 교착어, 그리고 한본어 현상에 대한 탐구 (written by Gemini) 9 1 2025 10.09 함수 Completesquare, 완전제곱식 변환 기능 25 1 2025 10.08 iptime 공유기 (AX2004T), 유선 핑 테스트 결과 (Ping Test) 278 11 2025 09.24 자동심장충격기, AED 내 주변에 설치된 곳 확인하기 174 1 2025 09.06 욕실 변기 - 필밸브 구조 - Fill Valve, Diaphragm 153 2025 08.28

    세상의모든계산기 님의 최근 댓글

    낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요.   처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다.    이제 이해되었습니다.   지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다.  하지만 여기서 처음 모양으로 더 이상 진행되진 않네요.      2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다.  https://allcalc.org/30694#comment_30704 2025 10.08
    글쓴이의 서명작성글 감추기 
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.