- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
점의 자취의 길이 공식
1. 점의 위치
- 좌표평면 위의 한 점 P 의 위치는 여러가지 방법으로 표현할 수 있습니다.
- x와 y의 관계로 직접 표현할 수도 있고 (x,y)
- 매개변수를 이용해 표현할 수도 있습니다. (x(t), y(t)) 또는 (x(r), y(θ))
2. 점의 자취의 길이 (공식)
- 점 P의 자취란, 평면 위에 존재할 수 있는 모든 점 P의 집합입니다.
- 연속되는 점의 집합은 직선이 될 수도 있고, 곡선이 될 수도 있습니다.
- 직선이나, 특수한 곡선인 경우에는 쉽게 길이를 구해낼 수 있습니다. 하지만 길이가 항상 쉽게 구해지는 것은 아닙니다. 그래서 일반적으로 적용되는 자취의 길이를 구하는 공식이 필요합니다.
- 좌표의 형식에 따라서 ds 부분은 다르게 나타낼 수 있습니다. 결과는 모두 같습니다.
또는
세상의모든계산기 님의 최근 댓글
낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요. 처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다. 이제 이해되었습니다. 지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다. 하지만 여기서 처음 모양으로 더 이상 진행되진 않네요. 2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다. https://allcalc.org/30694#comment_30704 2025 10.08