- TI nspire
[TI-nspire] 3D Graphing, 정사면체 그리기. Tetrahedron
각 변의 함수(Parametric)식 입력 방법
1. `Graphs & Geometry` 애플리케이션을 엽니다.
2. `Menu` 버튼을 누르고, `3D Graphing`을 선택합니다.
3. `Menu` -> `Entry/Edit` -> `Parametric`을 선택합니다.
4. 각 변의 식을 순서대로 입력합니다:
- 첫 번째 변: \( x(t) = 1 \), \( y(t) = 1 - 2t \), \( z(t) = 1 - 2t \)
- 두 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 \), \( z(t) = 1 - 2t \)
- 세 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 - 2t \), \( z(t) = 1 \)
- 네 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 + 2t \), \( z(t) = -1 \)
- 다섯 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 \), \( z(t) = -1 + 2t \)
- 여섯 번째 변: \( x(t) = -1 \), \( y(t) = 1 - 2t \), \( z(t) = -1 + 2t \)

이렇게 하면 정사면체의 모든 변을 3D 그래프에 그릴 수 있습니다. 각 변이 제대로 그려지면 정사면체의 구조가 완성됩니다.

두 점 사이의 거리

각 점을 A, B, C, D 라고 하면 벡터로 표현할 수 있고,
두 점 사이의 거리 = 정사면체 한변의 길이를 간단하게 구할 수 있습니다.
정사면체의 한 변의 길이를 계산하기 위해 두 꼭짓점 사이의 거리를 구하면 됩니다.
여기서는 주어진 꼭짓점 \(A(1, 1, 1)\)과 \(B(1, -1, -1)\) 사이의 거리를 계산해 보겠습니다.
두 점 \((x_1, y_1, z_1)\)과 \((x_2, y_2, z_2)\) 사이의 거리는 다음과 같이 계산됩니다:
\[ \text{거리} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]
여기서,
- \(A(1, 1, 1)\)
- \(B(1, -1, -1)\)거리를 계산하면:
\[ \text{거리} = \sqrt{(1 - 1)^2 + (-1 - 1)^2 + (-1 - 1)^2} \]
\[ \text{거리} = \sqrt{0 + (-2)^2 + (-2)^2} \]
\[ \text{거리} = \sqrt{0 + 4 + 4} \]
\[ \text{거리} = \sqrt{8} \]
\[ \text{거리} = 2\sqrt{2} \]따라서, 이 정사면체의 한 변의 길이는 \(2\sqrt{2}\)입니다.
두 면 사이의 각도
두 면 사이의 각도는 두점 A, B의 중심점인 E와, 나머지 두 점 C, D 가 이루는 각도를 구하면 된다.
세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도를 구하기 위해 벡터를 사용해야 합니다. 먼저 점 \( E \)의 좌표를 구한 후, 벡터 \( \vec{CE} \)와 \( \vec{ED} \)를 구하고, 이 두 벡터 사이의 각도를 구할 수 있습니다.
### 점 \( E \)의 좌표
점 \( E \)는 \( A \)와 \( B \)의 중점이므로, \( E \)의 좌표는 다음과 같이 계산됩니다:
- \( A(1, 1, 1) \)
- \( B(1, -1, -1) \)\[ E = \left( \frac{1+1}{2}, \frac{1+(-1)}{2}, \frac{1+(-1)}{2} \right) = (1, 0, 0) \]
### 벡터 \( \vec{CE} \)와 \( \vec{ED} \) 구하기
- \( C(-1, 1, -1) \)
- \( D(-1, -1, 1) \)
- \( E(1, 0, 0) \)벡터 \( \vec{CE} \):
\[ \vec{CE} = E - C = (1 - (-1), 0 - 1, 0 - (-1)) = (2, -1, 1) \]벡터 \( \vec{ED} \):
\[ \vec{ED} = D - E = (-1 - 1, -1 - 0, 1 - 0) = (-2, -1, 1) \]### 두 벡터 사이의 각도 구하기
벡터 \( \vec{CE} \)와 \( \vec{ED} \) 사이의 각도 \( \theta \)는 다음 공식을 사용하여 구할 수 있습니다:\[ \cos \theta = \frac{\vec{CE} \cdot \vec{ED}}{|\vec{CE}| |\vec{ED}|} \]
내적 \( \vec{CE} \cdot \vec{ED} \):
\[ \vec{CE} \cdot \vec{ED} = (2)(-2) + (-1)(-1) + (1)(1) = -4 + 1 + 1 = -2 \]벡터 \( \vec{CE} \)의 크기 \( |\vec{CE}| \):
\[ |\vec{CE}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]벡터 \( \vec{ED} \)의 크기 \( |\vec{ED}| \):
\[ |\vec{ED}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]따라서,
\[ \cos \theta = \frac{-2}{\sqrt{6} \cdot \sqrt{6}} = \frac{-2}{6} = -\frac{1}{3} \]\[
\theta = \cos^{-1}\left( -\frac{1}{3} \right)
\]이를 계산하면:
\[
\theta \approx 109.47^\circ
\]따라서, 세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도는 약 \( 109.47^\circ \)입니다.
벡터 \( \vec{CE} \)와 \( \vec{DE} \) 사이의 각도 \( \theta \) 는 180 - 109.47 = 70.53

댓글3
-
세상의모든계산기
3d 라이브러리 이용하기
1. https://allcalc.org/9730 을 참고해 geo3d.tns (영문)을 MyLib 폴더에 올리고, Refresh Library 를 수행합니다.
(프랑스어) 버전과 버전은 같은데 명령어 철자가 조금씩 달라서 일단은 영문판을 추천드립니다.2. 꼭지점 a,b,c,d 를 이용해 파라메트릭 함수를 생성합니다.

꼭지점이 리스트 꼴 {x1,y1,z1} 이면 좀 더 쉬워지지만, 벡터 꼴이라서 colAugment 함수를 중복해 활용하였습니다.
3. geo3d\putg(7,10) 를 실행해 g7~g10까지 4개 면에 대한 3d 파라메트릭 함수를 자동 생성합니다.
4. 3d Graphing 페이지에 가서 g7~g10 해당 함수를 화면에 보이도록 활성화(체크)해줍니다.
본문은 6개의 선분으로 그래핑했지만, 여기서는 4개 면으로 그래핑했기 때문에 면에 Surface(색) 과 Wire(선) 을 입힐 수 있음.
세상의모든계산기 님의 최근 댓글
교점이 2개 이상일때 모든 값을 구하는 법 계산기마다 가능/불가능이 갈릴 수도 있고, 수식에 따라 가능/불가능이 갈릴 수도 있죠. 불확실할때는 그래프로 확인하세요. 2025 12.16 T가 410인 해를 찾는 방법 -> 초기값을 입력하세요. [공학용 계산기] 공학용 계산기의 꽃? solve (솔브) 기능 이해하기 (Newton-Raphson 법, 뉴튼법) https://allcalc.org/11532 2025 12.16 참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11 일반 계산기는 보통 리셋기능이 따로 없기 때문에, 다른 요인에 영향을 받을 가능성은 없어 보이구요. '원래는 잘 되었는데, 지금은 설정 값이 날아간다'면 메모리 값을 유지할만큼 배터리가 꾸준하게 공급되지 않기 때문일 가능성이 높다고 봐야겠습니다. - 태양광이 있을 때는 계산은 가능하지만, 서랍등에 넣으면 배터리가 없어서 리셋 https://blog.naver.com/potatoyamyam/223053309120 (교체 사진 참조) 1. 배터리 준비: * 다이소 등에서 LR54 (LR1130) 배터리를 구매합니다. (보통 4개 들이 1,000원에 판매됩니다. LR44와 높이가 다르니 혼동하시면 안됩니다.) 2. 준비물: * 작은 십자드라이버 (계산기 뒷면 나사용. 이것도 없으시면 다이소에서...) 3. 커버 분해: * 계산기 뒷면의 나사를 풀고, 머리 부분(윗부분)의 커버를 조심스럽게 분해합니다. (참고해주신 블로그 사진을 보시면 이해가 빠르실 겁니다.) 4. 배터리 교체: * 기존 배터리를 빼냅니다. * 새 LR54 배터리의 '+'극 방향을 정확히 확인하여 제자리에 넣어줍니다. (대부분의 경우 '+'극이 위로 보이도록 넣습니다.) 5. 조립: * 커버를 다시 닫고 나사를 조여줍니다. * 블로그 사진을 보니 배터리 연결선 등이 눌려서 씹혀 있네요. 원래 씹히도록 설계를 안하는데, 원래 그렇게 만들어 놓은 건지? 모르겠네요. 여튼 씹히면 단선될 가능성이 있으니, 잘 보시고 플라스틱 틈새 등으로 적절히 배치해서 안씹히게 하는 것이 좋습니다. 6. TAX 재설정: * 계산기의 전원을 켜고 TAX 요율을 10%로 다시 설정합니다. 2025 12.10