- TI nspire
[TI-nspire] 통계, (모평균의) 신뢰 구간 구하는 방법(예제). Statistics - Confidence Intervals
1. 다음 샘플의 모평균에 대한 95% 신뢰구간을 추정하시오.
샘플 = {20,20,25,21,21,23,19,18,22}
문제 출처 : http://math7.tistory.com/66
2. 기본 통계값을 구함 (생략하고 3으로 뛰어도 됨)
【menu】【6】【1】【1】 : One Variable Statistics
3. 신뢰구간 Confidence Intervals 을 구함
- tInterval 프로그램은 DATA 를 직접 이용할 수도 있고, 통계값을 이용할 수도 있다.
tInterval List [, Freq [, CLevel ]]
(Data list input)
tInterval , sx, n[, CLevel]
(Summary stats input)
- 신뢰구간에 대한 요약된 결과는 stat.results 에 저장된다.
다른 통계 프로그램이 사용하는 변수명과 동일하므로 overwrite 될 수 있다.
- sx는 모편차(σx)가 아닌, 표본의 편차임에 주의하자.
- 변수명
Output variableDescriptionstat.CLower, stat.CUpperConfidence interval for an unknown population meanstat.Sample mean of the data sequence from the normal random distributionstat.MEMargin of errorstat.dfDegrees of freedomstat.σxSample standard deviationstat.nLength of the data sequence with sample mean
댓글 4
-
-
-
Sample DATA가 아니라, 통계치가 주어졌을 때
문제:
어느 회사에서 전자기기용 부품인 힌지를 만들고 있습니다.
생산 라인은 안정화되어, 샘플 테스트시 고장이 발생할 때까지 접힐 수 있는 횟수는 정규 분포를 이룹니다.
평균 접히는 횟수는 25만번이고, 표준편차는 2만번으로 나타났습니다.
이번 Lot 생산품중 100개의 샘플을 수거하여 조사하였을 때
제품이 고장날 때까지 접힐 수 있는 평균 횟수의 95% 신뢰구간을 구하세요.
주어진 값
- 모집단 평균 ( ): 250,000
- 모집단 표준편차 ( ): 20,000
- 샘플 크기 ( ): 100
- 신뢰수준 = 95% ( )풀이
1. 표준 오차 (Standard Error, SE) 계산:
2. 95% 신뢰구간 계산:
여기서 이므로,
3. 결과:
-
-
-
6: Statistics - 6: Confidence Intervals - 1: z Interval
Data Input method : Stats
(Data list input) zInterval σ,List[,Freq[,CLevel]]
(Summary stats input) zInterval σ,
,n [,CLevel]
-
-
-
z-interval vs t-interval 차이점
통계 프로그램에서 t-interval과 z-interval은 모집단의 평균을 추정할 때 사용하는 신뢰 구간 계산 방법으로, 모집단의 분산(또는 표준편차) 정보 유무와 표본 크기에 따라 선택됩니다.
1. z-interval (Z 신뢰 구간)
- 사용 조건: 모집단의 표준편차( )를 알고 있을 때 사용합니다.
- 표본 크기 요건: 일반적으로 표본 크기가 충분히 큰 경우(보통 )에 사용하면 정규분포에 가깝게 추정할 수 있습니다.
- 계산: 신뢰 구간의 한계는 표준 정규분포를 이용해 계산됩니다.
- 예:2. t-interval (T 신뢰 구간)
- 사용 조건: 모집단의 표준편차를 모르는 경우 사용하며, 표본 표준편차( )를 대신 사용합니다.
- 표본 크기 요건: 표본 크기가 작을 때(보통 ) 또는 모집단의 분산을 알 수 없을 때 주로 사용됩니다.
- 계산: 신뢰 구간의 한계는 t-분포를 이용해 계산합니다. 이때 자유도( )가 필요합니다.
- 예:
-
참고