• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계 ()
    • [통계] 왜도 SKEWNESS, 첨도 KURTOSIS

    • Profile
      • 세상의모든계산기
      • 2024.07.24 - 09:23 2015.10.18 - 19:34 1779 2

    왜도(skewness)와 첨도(kurtosis)는 통계학에서 데이터 분포의 형태를 설명하는 두 가지 중요한 척도입니다. 각각의 개념을 자세히 설명하면 다음과 같습니다:

    image.png

     

     

    1. 왜도 (Skewness)

     

    왜도는 데이터 분포의 비대칭성을 나타내는 척도입니다. 왜도의 값은 데이터가 평균을 중심으로 얼마나 비대칭적으로 분포되어 있는지를 나타냅니다. 왜도의 종류는 다음과 같습니다:

    - 양의 왜도 (Positive Skewness): 분포의 오른쪽 꼬리가 더 긴 경우입니다. 이 경우 데이터의 대부분이 평균보다 작은 값에 몰려 있으며, 평균보다 큰 값들이 일부 존재하게 됩니다. 양의 왜도의 값은 0보다 큽니다.

    - 음의 왜도 (Negative Skewness): 분포의 왼쪽 꼬리가 더 긴 경우입니다. 이 경우 데이터의 대부분이 평균보다 큰 값에 몰려 있으며, 평균보다 작은 값들이 일부 존재하게 됩니다. 음의 왜도의 값은 0보다 작습니다.

    - 대칭 (Symmetry): 분포가 좌우 대칭인 경우 왜도의 값은 0입니다. 이때, 평균, 중앙값, 최빈값이 거의 일치합니다.

    왜도의 공식은 다음과 같습니다:
    \[ \text{왜도} = \frac{E[(X - \mu)^3]}{\sigma^3} \]
    여기서 \( E \)는 기대값, \( X \)는 변수, \( \mu \)는 평균, \( \sigma \)는 표준편차입니다.

     

    ### 2. 첨도 (Kurtosis)

     

    첨도는 데이터 분포의 꼬리가 얼마나 두꺼운지 또는 뾰족한지를 나타내는 척도입니다. 첨도는 분포의 중심부와 꼬리 부분에서의 데이터 밀도를 설명하는데 유용합니다. 첨도의 종류는 다음과 같습니다:

    - 정규분포 (Mesokurtic): 정규분포와 같은 형태로, 첨도의 값이 0입니다. 보통 첨도가 3인 경우를 정규분포로 간주합니다.

    - 뾰족한 분포 (Leptokurtic): 중심부가 더 뾰족하고 꼬리가 두꺼운 분포로, 첨도의 값이 0보다 큽니다. 이 경우 극단적인 값들이 더 자주 나타납니다.

    - 평평한 분포 (Platykurtic): 중심부가 평평하고 꼬리가 얇은 분포로, 첨도의 값이 0보다 작습니다. 이 경우 극단적인 값들이 덜 자주 나타납니다.

    첨도의 공식은 다음과 같습니다:
    \[ \text{첨도} = \frac{E[(X - \mu)^4]}{\sigma^4} - 3 \]
    여기서 \( E \)는 기대값, \( X \)는 변수, \( \mu \)는 평균, \( \sigma \)는 표준편차입니다. 여기서 3을 빼는 이유는 정규분포의 첨도가 3이기 때문에 이를 기준으로 비교하기 위해서입니다.

     

    요약


    - 왜도 (Skewness): 데이터 분포의 비대칭성을 나타냄. 양의 왜도는 오른쪽 꼬리가 길고, 음의 왜도는 왼쪽 꼬리가 긴 분포.
    - 첨도 (Kurtosis): 데이터 분포의 꼬리와 중심부의 두께를 나타냄. 정규분포는 첨도가 0이며, 뾰족한 분포는 첨도가 양수, 평평한 분포는 첨도가 음수.

    이 두 척도는 데이터를 분석하고 이해하는 데 중요한 역할을 하며, 특히 이상치 탐지나 데이터의 특성을 이해하는 데 유용합니다.

     

     

    관련 자료

    http://www.hanbit.co.kr/preview/4122/sample.pdf

    ㄴ 이공계생을 위한 확률과 통계 preview

     

    왜도

    https://ko.wikipedia.org/wiki/%EB%B9%84%EB%8C%80%EC%B9%AD%EB%8F%84

     

    첨도

    https://ko.wikipedia.org/wiki/%EC%B2%A8%EB%8F%84

    Attached file
    sample.pdf 977.0KB 1,448image.png 3.1KB 17
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    언어의 유형과 만남: 고립어, 교착어, 그리고 한본어 현상에 대한 탐구 (written by Gemini) 9 1 2025 10.09 함수 Completesquare, 완전제곱식 변환 기능 25 1 2025 10.08 iptime 공유기 (AX2004T), 유선 핑 테스트 결과 (Ping Test) 278 11 2025 09.24 자동심장충격기, AED 내 주변에 설치된 곳 확인하기 174 1 2025 09.06 욕실 변기 - 필밸브 구조 - Fill Valve, Diaphragm 153 2025 08.28

    세상의모든계산기 님의 최근 댓글

    낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요.   처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다.    이제 이해되었습니다.   지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다.  하지만 여기서 처음 모양으로 더 이상 진행되진 않네요.      2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다.  https://allcalc.org/30694#comment_30704 2025 10.08
    글쓴이의 서명작성글 감추기 

    댓글2

    • Profile 0
      세상의모든계산기
      2015.10.18 - 19:44 2015.10.18 - 19:44 #8565

      예제)
      이공계생을 위한 확률과 통계 preview (챕터1, 53Page)
      리스트 = {1, 3, 2, 0, 1, 1, 2, 3, 2, 4, 3}
      왜도 = 0
      첨도 ≒ 1.9388

      댓글
    • 1
      Profile 0
      세상의모든계산기
      2015.10.18 - 20:10 #8568
      K-20151018-725792.png


      K-20151018-725888.png


      K-20151018-725942.png


      Attached file
      K-20151018-725792.png 19.7KB 115 K-20151018-725888.png 11.5KB 123 K-20151018-725942.png 14.9KB 117
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    2
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.