야코비 방법(Jacobi method) - 연립방정식을 푸는 반복적 수치 해석법
야코비 방법(Jacobi method)은 연립 방정식을 푸는 반복적 수치 해법 중 하나로, 각 변수의 값을 독립적으로 계산하여 점진적으로 해를 개선하는 방식입니다.
이 방법은 행렬 A로 표현되는 연립 방정식 Ax = b를 푸는 데 사용됩니다.
야코비 방법의 기본 아이디어는, 각 방정식에서 특정 변수를 풀 때 나머지 변수들은 모두 이전 반복에서 계산된 값을 사용한다는 것입니다.
즉, 각 변수를 동시에 독립적으로 업데이트합니다.
야코비 방법의 절차:
1. 연립 방정식 Ax = b에서, 각 변수 \( x_i \)를 풀기 위해 해당하는 식을 재배열합니다.
이때, 각 변수는 자기 자신의 계수로 나누고 나머지 변수들은 모두 이전 값에 따라 계산됩니다.
2. \( x_i \)를 구하는 일반적인 수식은 다음과 같습니다:
\[
x_i^{(k+1)} = \frac{1}{A_{ii}} \left( b_i - \sum_{j \neq i} A_{ij} x_j^{(k)} \right)
\]
여기서:
- \( x_i^{(k+1)} \)는 \( k+1 \)번째 반복에서의 \( i \)번째 변수 값입니다.
- \( A_{ii} \)는 행렬 A의 대각 성분입니다.
- \( A_{ij} \)는 행렬 A의 성분으로, \( i \)번째 방정식에서 \( j \)번째 변수에 곱해지는 계수입니다.
- \( x_j^{(k)} \)는 이전 \( k \)번째 반복에서의 \( j \)번째 변수 값입니다.
- \( b_i \)는 상수 벡터 b의 \( i \)번째 성분입니다.
3. 모든 변수를 한 번씩 업데이트한 후, 새로운 값들을 기반으로 다시 계산을 반복합니다.
특징:
- 독립 업데이트: 야코비 방법은 각 변수의 새 값을 계산할 때, 그 변수를 제외한 모든 변수는 이전 반복에서의 값을 사용합니다. 즉, 모든 변수가 동시에 독립적으로 업데이트됩니다.
- 수렴 조건: 야코비 방법이 수렴하기 위해서는 보통 A 행렬이 대각 우세(diagonally dominant)하거나, A가 특정 조건을 만족해야 합니다. 그렇지 않으면 이 방법이 수렴하지 않거나 느리게 수렴할 수 있습니다.
- 병렬 처리에 유리: 야코비 방법은 각 변수가 독립적으로 계산되기 때문에 병렬 처리에 적합합니다. 하지만 때로는 다른 방법들보다 수렴 속도가 느릴 수 있습니다.
야코비 방법은 수렴 속도가 느릴 수 있지만, 간단한 구조와 병렬 처리에 유리하다는 장점 때문에 다양한 수치 해석 문제에서 사용됩니다.
세상의모든계산기 님의 최근 댓글
낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요. 처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다. 이제 이해되었습니다. 지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다. 하지만 여기서 처음 모양으로 더 이상 진행되진 않네요. 2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다. https://allcalc.org/30694#comment_30704 2025 10.08