• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • "행렬에서 대각선, 행, 또는 열 중 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없다?

    • Profile
      • 세상의모든계산기
      • 2024.09.20 - 12:42 2024.09.20 - 12:02 281 1

    이 명제는 거짓입니다.

    행렬에서 행, 또는 열에서 한 줄이라도 0이면, 그 행렬은 역행렬을 가질 수 없습니다. 

    하지만 대각선 성분이 0인 경우에는 역행렬을 가질 수 있습니다. 

    image.png

     

     행렬의 기본 개념


    역행렬이 존재하려면, 행렬이 가역이어야 합니다. 즉, 행렬 \( A \)에 대해 역행렬 \( A^{-1} \)가 존재하려면 \( A \)는 정사각 행렬이고, 행렬식(det \( A \))이 0이 아니어야 합니다. 행렬식이 0이면 행렬은 특이 행렬로 간주되어 역행렬을 가질 수 없습니다.

     

     1. 행 또는 열이 모두 0인 경우


    행이나 열이 0인 경우, 해당 행렬은 선형 독립성을 상실합니다. 예를 들어, \( n \times n \) 행렬의 어느 한 행이나 열이 0이면, 그 행렬은 완전히 0으로만 구성된 벡터를 포함하고 있다는 의미입니다. 이는 행렬의 행렬식이 0임을 의미합니다. 즉, 역행렬이 존재하지 않습니다.

     예시:  
    \[
    A = \begin{pmatrix} 
    1 & 2 & 3 \\ 
    0 & 0 & 0 \\ 
    4 & 5 & 6 
    \end{pmatrix}
    \]
    이 행렬은 두 번째 행이 모두 0입니다. 이 경우, \( A \)의 행렬식은 0이므로 역행렬이 존재하지 않습니다.

     

     2. 대각선 성분이 모두 0인 경우

     

    그러나 대각선이 모두 0이라고 해서 반드시 역행렬이 존재하지 않는 것은 아닙니다.

     

     반대 예시:  
    \[
    A = \begin{pmatrix} 
    0 & 1 \\ 
    1 & 0  \\ 
    \end{pmatrix}
    \]
    이 경우, 행렬식 det(A) = 0×0 - 1×1 = -1 이므로 역행렬이 있습니다. 

    \[
    A^{-1} = \begin{pmatrix} 
    0 & 1 \\ 
    1 & 0  \\ 
    \end{pmatrix}
    \]
     

     

     

     

     결론


    - 행이 한 줄 모두 0이면 행렬은 역행렬이 없습니다.
    - 열이 한 줄 모두 0이어도 마찬가지로 역행렬이 없습니다.
    - 대각선이 한 줄 모두 0인 경우에는 역행렬이 있을 수도 있습니다. 

    따라서 "대각선이든 행이든 열이든 한줄이 0이면 다 역행렬 없음"이라는 명제는 거짓입니다.

    Attached file
    image.png 3.4KB 50
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    언어의 유형과 만남: 고립어, 교착어, 그리고 한본어 현상에 대한 탐구 (written by Gemini) 9 1 2025 10.09 함수 Completesquare, 완전제곱식 변환 기능 25 1 2025 10.08 iptime 공유기 (AX2004T), 유선 핑 테스트 결과 (Ping Test) 278 11 2025 09.24 자동심장충격기, AED 내 주변에 설치된 곳 확인하기 174 1 2025 09.06 욕실 변기 - 필밸브 구조 - Fill Valve, Diaphragm 153 2025 08.28

    세상의모든계산기 님의 최근 댓글

    낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요.   처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다.    이제 이해되었습니다.   지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다.  하지만 여기서 처음 모양으로 더 이상 진행되진 않네요.      2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다.  https://allcalc.org/30694#comment_30704 2025 10.08
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.09.20 - 12:09 2024.09.20 - 12:07 #47542

      행이나 열이 0으로만 구성된다는 것은 행렬이 가지고 있는 정보가 손실된다는 의미입니다.

      이를 선형 독립성과 연결해서 더 구체적으로 설명해볼게요.

       

       1. 선형 독립성과 선형 종속성


      선형 독립성이란, 여러 벡터가 있을 때 그 벡터들이 서로 독립적으로 정보를 전달한다는 의미입니다. 즉, 하나의 벡터가 나머지 벡터들의 선형 결합(곱한 뒤 더한 값)으로 표현될 수 없다면, 그 벡터들은 선형 독립입니다.

      선형 종속성은 그 반대입니다. 벡터들 중 하나가 나머지 벡터들로부터 생성될 수 있다면, 그 벡터들은 선형 종속입니다.

       예시:
      벡터 \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_2} = (2, 4)\)를 생각해봅시다.
      \(\mathbf{v_2}\)는 \(\mathbf{v_1}\)의 2배입니다. 즉, \(\mathbf{v_2}\)는 \(\mathbf{v_1}\)에 의해 표현될 수 있으므로, 이 두 벡터는 선형 종속입니다.

      반면, \(\mathbf{v_1} = (1, 2)\)와 \(\mathbf{v_3} = (3, 1)\)는 서로 독립적입니다. \(\mathbf{v_3}\)를 \(\mathbf{v_1}\)로 표현할 수 없기 때문에 선형 독립입니다.

       

       2. 행이나 열이 0일 때의 의미


      이제 행렬에서 행이나 열이 0인 경우를 생각해 봅시다.

       

       (1) 행이 0인 경우
      행렬에서 행은 하나의 벡터처럼 볼 수 있습니다. 만약 행렬 \( A \)의 어떤 행이 \( 0 \)으로만 이루어져 있다면, 그 행은 다른 행들과 어떤 관계도 없으며, 그 행 자체는 아무 정보도 전달하지 않습니다. 즉, 그 행은 선형 독립성을 상실하게 됩니다.

      선형 독립성은 행렬의 랭크(rank)와 관련이 있는데, 행렬의 랭크는 행렬에서 선형 독립적인 행 또는 열의 수를 의미합니다. 어떤 행이 0이면, 그 행은 독립적이지 않으므로 랭크가 줄어들고, 결과적으로 역행렬을 구할 수 없게 됩니다.

       예시:
      \[
      A = \begin{pmatrix}
      1 & 2 & 3 \\
      0 & 0 & 0 \\
      4 & 5 & 6
      \end{pmatrix}
      \]
      위 행렬에서 두 번째 행은 \( 0 \)으로만 이루어져 있습니다. 이 행은 다른 행들과 어떤 관계도 없으며, 아무런 정보를 주지 않습니다. 따라서 이 행렬은 선형 독립성을 상실한 것이고, 역행렬이 존재하지 않습니다.

       

       (2) 열이 0인 경우
      열이 0인 경우도 마찬가지입니다. 행렬의 어떤 열이 모두 0이면, 그 열은 다른 열들과 독립적으로 존재하지 않고, 그 열이 제공하는 정보가 전혀 없기 때문에 역행렬을 구할 수 없습니다. 이 역시 선형 독립성의 상실로 이어집니다.

       예시:
      \[
      B = \begin{pmatrix}
      1 & 0 & 3 \\
      4 & 0 & 6 \\
      7 & 0 & 9
      \end{pmatrix}
      \]
      이 행렬에서 두 번째 열은 모두 0입니다. 따라서 이 열은 다른 열들과 선형 독립적이지 않으며, 이 행렬의 행렬식은 0이 되어 역행렬이 없습니다.

       

       3. 요약


      - 행 또는 열이 0이라는 것은 그 벡터가 아무 정보도 전달하지 않음을 의미합니다.
      - 행렬의 행이나 열이 0이면, 그 행렬은 선형 독립성을 상실하고, 행렬식이 0이 되며, 역행렬이 존재하지 않습니다.

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.