- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
자기 포텐셜 -> 점의 자속밀도는? feat. curl
질문
전류 분포가 벡터 자기 포텐셜 A[Wb/m] 를 발생시킬 때,
점 (-1,2,5)[m] 에서의 자속 밀도 B[T]는?
(단, A=2yz^2ax + y^2xay+4xyzaz 이다)
답변
문제는 주어진 벡터 자기 퍼텐셜 \( \mathbf{A} \)에서 자속 밀도 \( \mathbf{B} \)를 계산하는 것입니다. 벡터 자기 퍼텐셜 \( \mathbf{A} \)는 다음과 같이 주어져 있습니다:
\[ \mathbf{A} = 2yz^2 \mathbf{a_x} + y^2 x \mathbf{a_y} + 4xyz \mathbf{a_z} \]
자속 밀도 \( \mathbf{B} \)는 벡터 자기 퍼텐셜 \( \mathbf{A} \)의 회전(curl)로 계산할 수 있습니다:
\[ \mathbf{B} = \nabla \times \mathbf{A} \]
회전 연산자의 정의는 다음과 같습니다:
\[ \begin{vmatrix}
\mathbf{a_x} & \mathbf{a_y} & \mathbf{a_z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z
\end{vmatrix} \]
여기서 \( A_x = 2yz^2 \), \( A_y = y^2 x \), \( A_z = 4xyz \)입니다.
이를 행렬식으로 계산하면:
\[ \nabla \times \mathbf{A} = \mathbf{a_x} \left( \frac{\partial (4xyz)}{\partial y} - \frac{\partial (y^2 x)}{\partial z} \right) - \mathbf{a_y} \left( \frac{\partial (4xyz)}{\partial x} - \frac{\partial (2yz^2)}{\partial z} \right) + \mathbf{a_z} \left( \frac{\partial (y^2 x)}{\partial x} - \frac{\partial (2yz^2)}{\partial y} \right) \]
각 항을 계산하면:
-
\( \mathbf{a_x} \) 항:
$ \frac{\partial (4xyz)}{\partial y} = 4xz , \frac{\partial (y^2 x)}{\partial z} = 0 $
$ \text{따라서, } \mathbf{a_x} \text{ 항은 } 4xz \mathbf{a_x} $
-
\( \mathbf{a_y} \) 항:
$ \frac{\partial (4xyz)}{\partial x} = 4yz , \frac{\partial (2yz^2)}{\partial z} = 4yz $
$ \text{따라서, } \mathbf{a_y} \text{ 항은 } (4yz - 4yz) = 0 $
-
\( \mathbf{a_z} \) 항:
$ \frac{\partial (y^2 x)}{\partial x} = y^2 , \frac{\partial (2yz^2)}{\partial y} = 2z^2 $
$ \text{따라서, } \mathbf{a_z} \text{ 항은 } (y^2 - 2z^2) \mathbf{a_z} $
따라서 자속 밀도 \( \mathbf{B} \)는 다음과 같습니다:
\[ \mathbf{B} = 4xz \mathbf{a_x} + (y^2 - 2z^2) \mathbf{a_z} \]
이 값을 점 \( (-1, 2, 5) \)에서 계산하면:
- \( x = -1 \)
- \( y = 2 \)
- \( z = 5 \)
$ \mathbf{B} = 4(-1)(5) \mathbf{a_x} + (2^2 - 2(5)^2) \mathbf{a_z} $
$ \mathbf{B} = -20 \mathbf{a_x} + (4 - 50) \mathbf{a_z} $
$ \mathbf{B} = -20 \mathbf{a_x} - 46 \mathbf{a_z} $
댓글1
-
세상의모든계산기
TI-nspire CAS 를 이용한 풀이
curl([2*y*z^(2),y^(2)*x,4*x*y*z])|x=−1 and y=2 and z=5
의 방식으로는 풀이가 되지 않습니다.
입력하면 오답 [0 0 0] 이 나옵니다.
세상의모든계산기 님의 최근 댓글
고장남 - POST 진입 실패, 모니터 안나옴 직접 사용할 일이 없어져서, 고향집에 가져다 놓고 어댑터만 꼽아 뒀습니다. 이번 추석에 가서 켜 보니까, 화면이 아예 안나오더라구요. 가져와서 분해해 살펴보니까 - 어댑터 12V는 정상 - 어댑터 꼽으면 바로 POWER 는 켜집니다. ㄴ POWER ON -> Fan 돌아감 + 파워 LED 들어옴 + NVME에 LED 들어옴 ㄴ HDMI 1, 2 신호 전혀 안들어옴 (모니터 2대 확인) ㄴ 키보드에 LED 안들어옴 (USB 5V 가 안들어오는 듯 함) - 옆구리 버튼은 작동하지 않습니다. 길게 눌러도 꺼지지 않음. 2025 10.14 다항식 나눗셈 (가장 정석적인 방법) (피제수, 나뉠 식) r1*r3 를 (제수, 나누는 식) r1+r3 로 직접 나누며, 여기서 r1을 변수로 취급합니다. 1. 몫 구하기: r1*r3 (나뉠 식)의 최고차항을 r1+r3 (나누는 식)의 최고차항 r1로 나눕니다. (r1*r3) / r1 = r3 <-- 이것이 몫(Quotient)이 됩니다. 2. 나머지 구하기: (원래 분자) - (몫 × 분모) 를 계산합니다. (r1*r3) - (r3 × (r1+r3)) = r1*r3 - (r1*r3 + r3^2) = -r3^2 <-- 이것이 나머지(Remainder)가 됩니다. 3. 결과 조합: 최종 결과는 `몫 + (나머지 / 나누는 식)` 형태로 씁니다. r3 + (-r3^2 / (r1+r3)) \[ \begin{array}{l} \phantom{r_1+r_3 \overline{) r_1 r_3}} r_3 \\ r_1+r_3 \overline{) \begin{array}[t]{@{}r@{}} r_1 r_3 \phantom{+r_3^2} \\ - (r_1 r_3 + r_3^2) \\ \hline -r_3^2 \\ \end{array}} \end{array} \] 2025 10.14 부분적 과정으로 분자(변수의 곱)를 다른 변수로 치환할 수 있다면 (r1*r3=a, r2*r4=b) 다항식에서도 강제 나눗셈 과정을 막을 수 있겠습니다만, 원래의 식에 적용시킬 수는 없어 의미가 없겠습니다. 2025 10.14 (r1*r3) / (r1+r3) 에서 원래라면 분자(r1*r3)에서 하나의 변수를 선택하여 그것을 기준으로 분모를 나누고 몫과 나머지로 분리하여 표현하는 것이 기본 원칙입니다만, 결과가 단항인 분수식일 경우 분자가 두 변수의 곱으로 표현되더라도 그것이 더 간단한 표현인 것으로 보고 그대로 두는 듯 합니다. 하지만 마지막 예시에서 보이는 것처럼 +1만 붙는 간단한 형식일지라도 다항식이 되는 순간 원래의 기본 원칙대로 대수의 나눗셈(r1*r3를 (r1+r3)로 나눔)이 강제 진행되어버리고 이를 막을 수 없는 듯 합니다. 2025 10.14 낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10