• ※ 사이트 내부 통합검색

  • ※ 카카오페이로 기부하기

  • ※ 사이트 내부 통합검색
첨부 '6'


Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄


Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

1. 개요

미분방정식의 해를 구하는 함수입니다. 

※ TI-89T의 desolve() 함수와 비슷한 기능을 합니다. ( 똑같지는 않은 듯)


2. 사용방법

2-1. 일반해

deSolve(1stOr2ndOrderODE, Var, depVar) ⇒ a general solution 

Returns an equation that explicitly or implicitly specifies a general solution to the 1st- or 2nd-order ordinary differential equation (ODE). In the ODE:

  • Use a prime symbol (press 【?!▶】) to denote the 1st derivative of the dependent variable with respect to the independent variable.
  • Use two prime symbols to denote the corresponding second derivative.

The prime symbol is used for derivatives within deSolve() only. In other cases, use d().

The general solution of a 1st-order equation contains an arbitrary constant of the form ck, where k is an integer suffix from 1 through 255. The solution of a 2nd-order equation contains two such constants. Apply solve() to an implicit solution if you want to try to convert it to one or more equivalent explicit solutions.

When comparing your results with textbook or manual solutions, be aware that different methods introduce arbitrary constants at different points in the calculation, which may produce different general solutions.

12-28-2015 Image002.png

12-28-2015 Image003.png


2-2. 특수해

deSolve(1stOrderODE and initCond, Var, depVar) ⇒ a particular solution

Returns a particular solution that satisfies 1stOrderODE and initCond. This is usually easier than determining a general solution, substituting initial values, solving for the arbitrary constant, and then substituting that value into the general solution.

initCond is an equation of the form:
depVar (initialIndependentValue) = initialDependentValue

The initialIndependentValue and initialDependentValue can be variables such as x0 and y0 that have no stored values. Implicit differentiation can help verify implicit solutions.

12-28-2015 Image004.png


2-3. 특수해

deSolve(2ndOrderODE and initCond1 and initCond2, Var, depVar) ⇒ particular solution

Returns a particular solution that satisfies 2nd Order ODE and has a specified value of the dependent variable and its first derivative at one point.

For initCond1, use the form:
depVar (initialIndependentValue) = initialDependentValue

For initCond2, use the form:
depVar (initialIndependentValue) = initial1stDerivativeValue

12-28-2015 Image005.png


2-4. 특수해

deSolve(2ndOrderODE and bndCond1 and bndCond2, Var, depVar) ⇒ a particular solution

Returns a particular solution that satisfies 2ndOrderODE and has specified values at two different points.

12-28-2015 Image006.png


3. 주의사항



※ 내용 출처 : TI-Nspire™_ReferenceGuide_EN_V3.9.pdf

댓글 '15'