• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 테일러 급수 Taylor Series

    • Profile
      • 세상의모든계산기
      • 2024.11.01 - 23:36 2015.10.12 - 20:57 3283 6

    테일러 급수(Taylor series)는 함수 \( f(x) \)를 주어진 점 \( a \)를 중심으로 다항식의 형태로 근사하는 방법입니다.

    이는 특정 점 주변에서 함수의 값을 근사하기 위해 함수의 도함수 값을 활용하여 무한급수의 형태로 표현합니다. 

     

    테일러 급수의 정의

     

    주어진 함수 \( f(x) \)가 \( a \)에서 \( n \)차 미분 가능할 때, \( f(x) \)의 \( a \)를 중심으로 한 테일러 급수는 다음과 같이 정의됩니다:

    \[
    f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots
    \]

    즉, 일반적인 형태는 다음과 같습니다:

    \[
    f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x - a)^n
    \]

    여기서:
    - \( f^{(n)}(a) \)는 \( f(x) \)의 \( n \)차 미분을 \( a \)에서 평가한 값입니다.
    - \( n! \)는 \( n \)의 팩토리얼로, \( n! = n \times (n-1) \times \cdots \times 2 \times 1 \)입니다.
    - \( (x - a)^n \)는 \( x \)와 \( a \)의 차이를 \( n \)차까지 곱한 것입니다.

     

    테일러 급수의 적용

     

    테일러 급수는 다음과 같은 경우에 유용합니다:

    1. 근사 계산: 복잡한 함수를 다항식으로 근사하여 계산을 간단히 할 수 있습니다.
    2. 해석적 함수 연구: 함수의 성질을 분석하고 극한, 연속성, 미분 가능성을 연구하는 데 도움을 줍니다.
    3. 수치해석: 수치적 방법에서 많은 알고리즘의 근본이 됩니다.

     

    예시

     

    함수 \( e^x \)의 테일러 급수는 \( a = 0 \)을 중심으로 하면 다음과 같이 됩니다:

    \[
    e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
    \]

    또한, \( \sin(x) \)의 테일러 급수는 다음과 같습니다:

    \[
    \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n + 1)!}x^{2n + 1}
    \]

    이러한 테일러 급수는 \( x \)가 0에 가까운 경우 \( e^x \)와 \( \sin(x) \)의 값에 매우 잘 근사합니다.

     

    결론

     

    테일러 급수는 함수 근사의 강력한 도구로, 미적분학, 물리학, 공학 등 다양한 분야에서 널리 사용됩니다. 이를 통해 복잡한 함수도 간단한 다항식으로 접근하여 다양한 문제를 해결할 수 있습니다.

     

     

    참고

     

    image.png

    http://navercast.naver.com/contents.nhn?rid=22&contents_id=5561

     

    https://ko.wikipedia.org/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98

     

    Attached file
    image.png 15.3KB 17
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    [fx-570 CW] 문자 변수에 값 저장하기 6 1 2025 10.24 복잡한 다항식 수식에서 계산기 유효 자릿수에 따른 approx() 오차 50 6 2025 10.22 [HP Prime] Solve 함수 25 1 2025 10.20 세모계 사이트에서 파일 업로드 에러 (Type 7) 발생할 수 있습니다. 76 2025 10.13 언어의 유형과 만남: 고립어, 교착어, 그리고 한본어 현상에 대한 탐구 (written by Gemini) 175 1 2025 10.09

    세상의모든계산기 님의 최근 댓글

    불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면?       - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음.  - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐.  2025 10.24 HP Prime 에서 <Home> 73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치   <CAS> 21자리까지 나와서 이상하다 싶었는데,  Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가? (전) 73.0495070584718691243 (21-digits ????) (후) 73.0495070584718500814401 (24-digits ????) 찾아보니 버그는 아니고,  CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함. Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen). 출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657 일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임.  2025 10.23 khiCAS 에서 HP 39gII 에 올린 khiCAS는 254! 까지 계산 가능, 255! 부터는 ∞   fx-9750GIII 에 올린 khiCAS는  factorial(533) => 425760136423128437▷  // 정답, 10진수 1224자리 factorial(534) => Object too large 2025 10.23 같은 방식으로 500! 근사값을 구해보면       1.219933487 × 10^(1134) 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.23
    글쓴이의 서명작성글 감추기 

    댓글6

    • Profile 0
      세상의모든계산기
      2024.10.12 - 13:03 2015.10.12 - 20:58 #8032

      [TI-nspire] 의 taylor() 내장 함수


      taylor(sin(x),x,13)

      image.png

      ㄴ 상단 : Degree, 하단 : Radian 

       

      * 이런 저런 이유로 각도 설정은 항상 Radian 으로 하는 것이 좋음. 

      Attached file
      image.png 15.7KB 16
      댓글
    • Profile 0
      세상의모든계산기
      2024.11.02 - 08:18 2024.10.12 - 12:06 #49679

      f(x) = e^x 의 테일러 급수 근사값 그래프


      image.png

      image.png

      image.png

      image.png

       

      Attached file
      image.png 60.2KB 13 image.png 60.8KB 14 image.png 56.3KB 21 image.png 55.4KB 16
      댓글
    • Profile 0
      세상의모든계산기
      2024.10.12 - 12:14 2024.10.12 - 12:14 #49687

      예시에서 0 을 중심으로 테일러 급수를 전개한 이유는?


      테일러 급수를 0을 중심으로 전개하면 '매클로린 급수'라고도 불리는 특별한 경우의 테일러 급수가 됩니다.

      1. 계산의 단순화: 0을 중심으로 전개하면 계산이 상대적으로 간단해집니다. x^n 항의 계수가 f^(n)(0) / n!로 표현되어, 많은 함수에서 이 값을 쉽게 계산할 수 있습니다.
      2. 대칭성: 많은 중요한 함수들(예: e^x, sin(x), cos(x))이 원점에 대해 대칭적인 성질을 가집니다. 0을 중심으로 전개하면 이러한 대칭성을 잘 활용할 수 있습니다.
      3. 표준화: 0을 기준점으로 사용하면 다양한 함수들을 일관된 방식으로 비교하고 분석할 수 있습니다.
      4. 수학적 편의성: 많은 수학적 정리와 응용에서 0을 중심으로 한 급수 전개가 유용하게 사용됩니다.
      5. 오차 분석: 0 주변에서의 근사는 오차 분석이 상대적으로 쉽습니다.
      댓글
    • Profile 0
      세상의모든계산기
      2024.10.12 - 13:26 2024.10.12 - 13:05 #49694

      $ 1.04^{\frac{2}{3}} $ 을 테일러 급수를 이용해 계산한다면?


       

      테일러 급수 근사 계산기
      댓글
    • Profile 0
      세상의모든계산기
      2024.11.01 - 23:33 2024.11.01 - 23:28 #51924

      테일러 급수의 오차 한계는?


      테일러 급수에서 오차는 보통 테일러 급수의 n차 항까지 근사했을 때 실제 함수 값과의 차이로 정의됩니다.

      이 오차를 나타내는 대표적인 표현이 테일러 정리의 나머지항(Remainder Term)입니다.

      일반적으로 오차의 한계를 제시할 때는 라그랑주 잔여항(Lagrange Remainder) 또는 코시 잔여항(Cauchy Remainder)를 사용합니다.

       

      만약 어떤 함수 \( f(x) \)를 \( a \)를 중심으로 한 테일러 급수로 근사한다고 할 때, 테일러 급수의 \( n \)차 항까지 근사한 오차는 다음과 같은 형태로 주어집니다.

       

      라그랑주 잔여항에 의한 오차
      라그랑주 잔여항 \( R_n(x) \)은 다음과 같이 표현됩니다:
      \[
      R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}
      \]

      여기서:
      - \( f^{(n+1)}(c) \)는 \( a \)와 \( x \) 사이의 어떤 점 \( c \)에서의 \( (n+1) \)차 미분값입니다.
      - \( (n+1)! \)은 \( n+1 \) 팩토리얼입니다.
      - \( (x - a)^{n+1} \)는 \( x \)와 중심 \( a \) 간의 거리의 \( (n+1) \)제곱입니다.

      - 테일러 전개를 통해 n번째 항까지 사용하였다면, n+1번째 항이 오차 한계에 해당함을 알 수 있습니다. 

       

      이 표현을 통해 오차의 크기를 다음과 같이 한정할 수 있습니다:
      \[
      |R_n(x)| \leq \frac{\max_{c \in [a, x]} |f^{(n+1)}(c)|}{(n+1)!} |x - a|^{n+1}
      \]
      따라서, 주어진 구간에서 \( f^{(n+1)}(c) \)의 최대값을 알면, 이 잔여항을 이용하여 테일러 급수 근사 오차의 한계를 추정할 수 있습니다.

      이 오차는 테일러 급수의 차수가 높아질수록 작아지며, 중심에 가까운 점일수록 더 정확한 근사를 제공합니다.

      댓글
    • 1
      Profile 0
      세상의모든계산기
      2024.11.01 - 23:39 2024.11.01 - 23:36 #51927

      예) 구간[3,5] 에서 f(x)=√x 의 근사값을 a=4 에서의 2차 테일러 다항식을 이용하여 구할 때, 테일러 부등식에 의한 오차의 한계로 가장 적절한 것은?
      (단, $ \dfrac{1}{3^{5/2}} \approx 0.064, \dfrac{1}{4^{5/2}} \approx 0.031, \dfrac{1}{5^{5/2}} \approx 0.018) $)

       

      image.png

      Attached file
      image.png 39.6KB 14
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    6
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.