• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 직교 좌표계 vs 극좌표계의 시각적 비교

    • Profile
      • 세상의모든계산기
      • 2024.10.30 - 15:37 2024.10.27 - 18:21 801 4

    1. 두 개의 극좌표 함수가 있습니다. 

     

    r(θ) = 1
    r(θ) = 1 - cos(θ)

     

     

    2. 직교좌표계에서 표시.

     

    Rectangular Coordinate = 카르테시안 좌표계 Cartesian coordinate system

    image.png

     

    각 축이 서로 수직(직각)으로 만남. 

    각 축의 값이 커지거나 작아지는 것은 일직선 위에서 발생

     

     

    3. 극좌표계에서 표시

     

    Polar Coordinate

    import numpy as np
    import matplotlib.pyplot as plt
    
    # t의 범위 설정 (0부터 2π까지)
    t = np.linspace(0, 2 * np.pi, 100)
    
    # 극좌표 함수 정의
    r1 = np.ones_like(t)  # r(t) = 1
    r2 = 1 - np.cos(t)    # r(t) = 1 - cos(t)
    
    # 극좌표 그래프 그리기
    fig = plt.figure(figsize=(12, 6))
    
    # r(t) = 1 그래프
    ax1 = fig.add_subplot(121, projection='polar')
    ax1.plot(t, r1, label='r(t) = 1', color='b')
    ax1.fill(t, r1, color='blue', alpha=0.2)  # 그래프 아래 영역 채우기
    ax1.set_title('Polar Plot of r(t) = 1', va='bottom')
    ax1.set_ylim(0, 2)  # 반지름 범위 설정
    ax1.legend()
    
    # r(t) = 1 - cos(t) 그래프
    ax2 = fig.add_subplot(122, projection='polar')
    ax2.plot(t, r2, label='r(t) = 1 - cos(t)', color='r')
    ax2.fill(t, r2, color='red', alpha=0.2)  # 그래프 아래 영역 채우기
    ax2.set_title('Polar Plot of r(t) = 1 - cos(t)', va='bottom')
    ax2.set_ylim(0, 2)  # 반지름 범위 설정
    ax2.legend()
    
    # 그래프 보여주기
    plt.tight_layout()
    plt.show()

     

    image.png

     

    극좌표계의 구조

    1. 각도 축: 극좌표계에서tt 축(각도 축)은 원점을 기준으로 하는 방향을 나타냅니다. 각도는 일반적으로 반시계 방향으로 측정되며, 0에서 2π까지 변화합니다.

    2. 반지름 축: r 축(반지름)은 원점으로부터의 거리로, 특정 각도에 따라 뻗어 있습니다. 반지름은 원점에서 시작하여 외부로 나아가며, 주어진 각도 t에서의 반지름 r 값에 따라 점이 위치하게 됩니다.

    3. 동심원: 극좌표계는 다양한 반지름에 대해 중심이 같은 원을 그리는 "동심원" 형태로 되어 있습니다. 즉, 반지름 r의 값에 따라 같은 각도 t에서 원의 크기가 결정됩니다.

     

     

    4. 비교

     

    • 직교좌표계에서는 x축과 y축이 수직으로 만나며, 각 축이 서로의 기준을 이루는 데 반해,
    • 극좌표계에서는 각도와 반지름이 서로 독립적인 성질을 가지며, 각도는 방향을, 반지름은 거리를 나타내게 됩니다.
    Attached file
    image.png 38.7KB 32image.png 153.5KB 34polarcord_integral.tns 7.6KB 53
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    AGI 자기 거버넌스 구조와 인간-AGI 관계 모델 (written by GEMINI & GPT) 32 1 2026 01.30   AI 시대, '기본소득'을 넘어 '기여소득'으로: 새로운 사회 계약을 향한 제언 - Written by Gemini 72 1 2026 01.28 쌀집계산기로 선형 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 100 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 155 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 481 10 2025 12.28

    세상의모든계산기 님의 최근 댓글

    해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요.    2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다.  그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다.  2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02 조만간 있을 AGI의 '완성' 시점은 최종 형태가 아니라, 질적으로 다른 무언가가 '시작'되는 변곡점을 의미합니다. 그렇다면 그 변곡점의 본질, 즉 '초기 단계 AGI'와 그 직전의 '고도로 발전된 AI + 에이전트 시스템'의 근본적인 차이는 무엇일까요? 가장 큰 차이는 '주어진 목표를 수행하는 능력'에서 '스스로 목표를 설정하고 추상적인 의도를 이해하는 능력'으로의 전환입니다. 조금 더 구체적으로, 다음과 같은 4가지 근본적인 차이점으로 설명할 수 있습니다. --- 1. 자율적 목표 설정 및 재정의 능력 (Autonomous Goal Setting) * 이전 (AI + 에이전트): 인간이 명확한 목표를 '제시'해야 합니다. * "대한민국의 저출산 문제에 대한 원인과 해결책을 조사해서 100페이지 분량의 보고서로 만들어 줘." -> 이 목표는 복잡하지만 명확합니다. AI는 이 목표를 달성하기 위해 인터넷을 검색하고, 데이터를 분석하고, 문서를 작성하는 등 수많은 하위 작업을 수행합니다. 하지만 '보고서 작성'이라는 최종 목표 자체를 바꾸지는 않습니다. * 이후 (초기 AGI): 인간이 추상적인 '의도'나 '상태'를 제시하면, 스스로 최적의 목표를 '설정'하고, 상황에 따라 목표를 수정합니다. * "대한민국의 저출산 문제를 해결해 줘." -> AGI는 '해결'이라는 단어의 의미를 스스로 정의하기 시작합니다. 1. 단기 목표: '온라인상의 부정적인 여론을 긍정적으로 전환'이라는 목표 설정 -> 여론 조작이 아닌, 긍정적 정책 홍보 캠페인 기획 및 실행. 2. 중기 목표: '가장 효율적인 양육비 지원 정책 모델 설계'라는 목표 설정 -> 전 세계 데이터를 분석하여 새로운 복지 정책 모델을 스스로 창안하고 시뮬레이션하여 정부에 제안. 3. 장기 목표: '사회 구조적 문제 해결'이라는 목표 설정 -> 교육, 부동산, 노동 시장의 상호관계를 분석하여 근본적인 해결책을 위한 새로운 사회 시스템을 설계. 핵심 차이: 이전 AI는 주어진 과제를 푸는 '최고의 문제 해결사'라면, 초기 AGI는 '어떤 문제를 풀어야 하는지 스스로 찾아내는 최초의 전략가'입니다. 2. 범용적 학습 및 기술 합성 능력 (Cross-Domain Generalization) * 이전 (AI + 에이전트): 특정 분야(도메인)에서 학습한 지식을 다른 분야에 직접적으로 '합성'하여 새로운 기술을 창조하는 데 한계가 있습니다. 코딩을 학습한 AI는 코딩을 잘하고, 의학 논문을 학습한 AI는 의학 지식을 잘 요약합니다. * 이후 (초기 AGI): 완전히 다른 분야의 지식을 융합하여 새로운 해결책이나 기술을 자발적으로 만들어냅니다. * 예시: 생물학 교과서에서 '단백질 접힘' 구조를 학습한 후, 아무도 시키지 않았는데 스스로 판단하여 그 구조를 시뮬레이션할 수 있는 새로운 파이썬 코드를 처음부터 작성하고, 그 결과를 검증하기 위해 물리학 엔진의 원리를 적용하여 테스트 환경까지 구축합니다. 지식(생물학)을 바탕으로 완전히 새로운 도구(소프트웨어)를 창조한 것입니다. 3. 재귀적 자기 개선 (Recursive Self-Improvement) * 이전 (AI + 에이전트): 자신의 작업 '결과물'을 개선할 수는 있습니다. (예: 코드의 버그를 고치거나, 문장의 어색함을 수정) * 이후 (초기 AGI): 자신의 '사고방식'이나 '학습 방식' 자체를 분석하고 개선합니다. * "내가 정보를 처리하는 현재의 방식(알고리즘)은 특정 종류의 문제에서 비효율적이다. 나의 핵심 아키텍처를 이런 식으로 변경하면 학습 속도가 10% 더 빨라질 것이다." 라고 스스로의 구조적 개선안을 제안하고, 심지어 코드를 수정하기 시작합니다. 뇌를 사용하는 것을 넘어, 뇌의 구조를 스스로 바꾸기 시작하는 단계입니다. 4. 깊이 있는 세계 모델과 상식 (Robust World Model & Common Sense) * 이전 (AI + 에이전트): "불은 뜨겁다"는 사실을 텍스트 데이터로부터 학습합니다. 하지만 그 의미를 물리적으로 완전히 이해하지는 못합니다. * 이후 (초기 AGI): 행동의 '결과'를 상식적으로 추론합니다. * 가상의 실험실 환경에서 작업을 수행할 때, "분젠 버너 옆에 종이 보고서를 두면 안 된다"는 명시적인 지시가 없었더라도, '불=뜨거움', '종이=타는 물질' 이라는 지식과 물리적 인과관계를 스스로 연결하여 위험을 회피합니다. 이는 단순한 정보의 조합이 아닌, 세상이 어떻게 돌아가는지에 대한 내재적인 모델을 갖추고 있음을 의미합니다. --- 한눈에 보는 비교 ┌─────┬─────────────┬────────────────────────────┐ │ 특징 │ 고도로 발전된 AI + 에이전트 │ 초기 단계 AGI │ ├─────┼─────────────┼────────────────────────────┤ │ 핵심 정체성 │ 명령 수행자 (Goal Executor) │ 의도 파악 및 목표 설정자 (Intent Interpreter) │ │ 목표 처리 │ 주어진 구체적 목표를 완벽하게 수행 │ 추상적 의도를 바탕으로 스스로 목표 설정/수정 │ │ 학습/기술 │ 특정 분야에 특화, 도구 사용에 능숙 │ 여러 분야의 지식을 융합하여 새로운 기술 창조 │ │ 자기 개선 │ 결과물(Output)을 수정 │ 사고방식/구조(Process/Architecture)를 수정 │ │ 추론 방식 │ 논리, 데이터 기반 추론 │ 상식과 인과관계 기반의 추론 │ └─────┴─────────────┴────────────────────────────┘ 결론적으로, 2027~2030년에 우리가 목격할 '초기 AGI'는 단순히 더 똑똑해진 AI가 아니라, 인간의 지시 없이도 스스로 '왜?'라고 질문하고, 자신만의 목표를 만들어 행동하며, 스스로를 성장시키는 질적으로 완전히 다른 존재의 첫 등장을 의미할 것입니다. 2026 01.31 > 자동차 회사의 노조가 "노조와 합의 없이 AI로봇을 공장에 들일 수 없다"는 선언을 하고 있어. 위의 내용에 적용하여 해결 방안을 만들어 줘. ✦ 네, 아주 현실적이고 시의적절한 시나리오입니다. 자동차 회사의 노조 선언은 앞으로 여러 산업 현장에서 벌어질 일의 축소판과도 같습니다. 이 문제를 앞서 나눈 대화의 해결 방안에 적용하여, '기업-노조-정부' 3자가 참여하는 '미래 지향적 대타협: AI 전환 파트너십 구축 방안'을 구체적으로 만들어 보겠습니다.   상황 분석: 노조의 선언은 '저항'이 아닌 '협상 요구'   먼저, 노조의 선언을 "기술을 맹목적으로 거부하는 러다이트 운동"으로 해석해서는 안 됩니다. 이는 일자리의 미래와 인간의 존엄성에 대한 조합원들의 지극히 합리적인 '불안'의 표현이자, 변화의 과정에서 소외되지 않고 주체적으로 참여하겠다는 강력한 '협상 요구'입니다. 따라서 해결 방안의 목표는 노조를 억누르는 것이 아니라, 이들을 AI 전환의 가장 중요한 '파트너'로 만드는 것이어야 합니다.   해결 방안: 'AI 전환 파트너십' 3자 협약 모델   이 모델은 '사회적 안전망'과 '산업적 가속 페달'의 원리를 특정 산업 현장에 맞게 구체화한 것입니다.   1. 기업의 역할: '이익 공유'와 '재교육 투자'를 통한 신뢰 구축   기업은 AI 로봇 도입으로 얻게 될 막대한 이익을 독점하는 대신, 그 과실을 노동자들과 공유하고 이들의 미래에 투자하는 모습을 보여주어야 합니다.   ① 생산성 향상 이익 공유제 도입:   * AI 로봇 도입으로 발생하는 비용 절감액과 생산성 향상분의 일정 비율(예: 20%)을 노사 합의로 'AI 전환 기금'으로 적립합니다. 이 기금은 아래의 재교육 및 전환 배치 프로그램의 재원으로 사용됩니다. ② 대규모 사내 재교육 및 '신(新)직무' 전환 배치:   * 단순 조립 라인의 노동자를 해고하는 대신, 이들을 새로운 시대에 필요한 인력으로 재교육하여 전환 배치합니다. 이것이 바로 '기여 인센티브' 개념을 기업 내에서 실현하는 것입니다.   * '로봇 유지보수 및 운영 전문가': 현장 경험이 풍부한 노동자들이 로봇의 일상적인 점검, 유지보수, 운영을 책임집니다.   * 'AI 시스템 모니터링 및 평가자': 로봇의 생산 데이터를 모니터링하고, 로봇의 움직임이나 작업 결과가 비정상적일 때 이를 식별하고 평가하는 역할을 합니다. (예: "이 로봇의 용접 불량률이 높아지고 있다.")   * '공정 데이터 라벨러 및 AI 트레이너': 숙련된 인간 노동자의 정교한 움직임과 문제 해결 과정을 데이터로 기록하고, 이를 AI가 학습할 수 있도록 가공(라벨링)합니다. 이는 AI 로봇의 완성도를 높이는 가장 중요한 '데이터 노동'이며, 기존 노동자들에게 새로운 고부가가치 직무를 제공합니다.   2. 노조의 역할: '저항의 주체'에서 '전환의 주체'로   노조는 고용 안정을 보장받는 대신, AI 도입에 협력하며 조합원들이 새로운 시대에 적응하도록 이끄는 역할을 맡습니다.   ① 단계적 AI 도입 협력:   * 회사가 제안한 '이익 공유' 및 '재교육' 계획을 신뢰하고, AI 로봇 도입 자체에 대한 반대를 철회합니다. 대신, 가장 위험하거나 반복적인 공정부터 로봇을 도입하는 '단계적 계획'을 회사와 함께 수립합니다. ② 재교육 프로그램 공동 설계 및 운영:   * 회사가 제공하는 재교육 프로그램이 실효성이 있는지 감시하고, 현장 노동자들의 눈높이에 맞게 커리큘럼을 공동으로 설계하고 운영합니다. ③ '신(新)직무'에 대한 임금 및 단체 협약 체결:   * 'AI 트레이너', '로봇 운영 전문가' 등 새롭게 만들어진 직무에 대한 적정한 임금 수준, 노동 조건, 권익 보호를 위한 새로운 단체 협약을 회사와 체결합니다. 노조의 역할이 '기존 일자리 사수'에서 '미래 일자리의 가치 창출 및 권익 보호'로 진화하는 것입니다. 3. 정부의 역할: '안전망' 제공과 '가속 페달' 지원   정부는 이 대타협이 원활하게 이루어지도록, 기업과 노조 양측 모두에게 인센티브를 제공하고 최후의 안전망을 구축합니다. ① 'AI 전환 투자 세제 혜택' 제공 (가속 페달):   * 회사가 'AI 전환 기금'에 출연하는 금액과, 노동자 재교육에 투자하는 비용에 대해 파격적인 세액 공제 혜택을 줍니다. 이는 회사가 노동자를 해고하는 대신 재교육을 선택하도록 유도하는 강력한 당근이 됩니다. ② '전환기 고용보험' 적용 (안전망):   * 불가피하게 전환 배치되지 못하는 소수의 노동자들을 위해, 일반 실업급여보다 더 긴 기간 동안, 더 높은 수준의 소득을 보장하는 특별 고용보험 프로그램을 적용합니다. 재취업 및 창업 지원도 병행합니다. ③ 국가적 '기본소득/기여 인센티브' 모델의 시범 사업으로 지정:     * 이 자동차 공장의 사례를 국가 전체의 사회 시스템 전환을 위한 중요한 시범 사업으로 지정하고, 재교육 참여자나 신직무 종사자에게 국가 차원의 '기여 인센티브'를 추가로 제공하는 방안을 모색합니다.   결론   이러한 3자 파트너십을 통해, 노조의 선언은 더 이상 '위기'가 아닌 '기회'가 됩니다. 기업은 노사 갈등 없이 안정적으로 미래 경쟁력을 확보하고, 노동자들은 일자리를 잃는 대신 새로운 기술 시대의 주역으로 거듭나며, 정부는 사회적 혼란을 최소화하며 산업 구조 전환을 성공적으로 이끌 수 있습니다. 이는 AI 시대의 갈등을 해결하는 가장 현실적이고 상생 가능한 모델이 될 것입니다. 2026 01.28 은행앱 통합하면서 없어졌나보네요.   ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요.  https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25
    글쓴이의 서명작성글 감추기 

    댓글4

    • Profile 0
      세상의모든계산기
      2024.10.27 - 19:00 2024.10.27 - 19:00 #51550

      참고 : BallPen.blog, 내 나이의 빛깔 - 극좌표계


      https://ballpen.blog/%EA%B7%B9%EC%A2%8C%ED%91%9C%EA%B3%84-polar-coordinate-system/

      댓글
    • Profile 0
      세상의모든계산기
      2024.10.27 - 19:21 2024.10.27 - 19:03 #51553

      극좌표계에서의 면적 요소 \(dA\)


      1. 부채꼴 형상:
      - 극좌표계에서 \(r\)와 \(\theta\)의 변화에 따라 만들어지는 면적 요소는 부채꼴의 형태를 가집니다. 그러나 이 부채꼴은 작아질수록 사각형에 가까워집니다.

       

      2. 사각형 근사:
      - 부채꼴의 끝부분이 작아질 때, 이를 사각형으로 근사할 수 있습니다. 이때 사각형의 한 변은 \(dr\) (거리에 해당), 다른 변은 \(r \, d\theta\) (각도 변화에 따른 아크 길이에 해당)입니다.

       

      image.png

       

      3. 면적 계산:
      - 따라서 미소 면적 요소는 다음과 같이 표현할 수 있습니다:
      \[
      dA = r \, dr \, d\theta
      \]
      - 여기서 \(r \, d\theta\)는 사각형의 한 변의 길이를 나타내고, \(dr\)는 나머지 변의 길이를 나타냅니다.
      - 즉, 사각형의 면적은 다음과 같이 계산할 수 있습니다:
      \[
      dA \approx (r \, d\theta) \cdot (dr) = r \, dr \, d\theta
      \]

       

      4. 순서 변경:
      - 이 면적 요소는 \(dA = r \, dr \, d\theta\)로 쓸 수 있으며, 순서를 바꿔서도 쓸 수 있습니다. 예를 들어 \(dA = r \, dr \, d\theta\)는 \(dA = dr \cdot r \, d\theta\)와 같이 쓸 수 있습니다. 이는 곱셈의 교환 법칙에 따라 가능하며, 적분할 때에도 상관없이 사용됩니다.

      Attached file
      image.png 43.4KB 27
      댓글
    • Profile 0
      세상의모든계산기
      2024.10.27 - 19:26 2024.10.27 - 19:25 #51559

      극좌표 함수의 형태로 나타나는 이중적분


      극좌표 함수에서 \(dA = r \, dr \, d\theta\) 형태로 나타낼 수 있는 이중적분 \(\int \int f(r, \theta) \, r \, dr \, d\theta\)는 면적을 계산하는 방식입니다.

      이 계산식에서 \(r\)과 \(\theta\)의 변화에 따른 미소 면적의 총합으로 이해할 수 있습니다.

       

      이중적분의 의미

      1. 미소 면적의 총합:
         - 극좌표계에서 \(dA\)는 미소 면적 요소를 나타냅니다. \(r\)이 변화하고, \(\theta\)도 변화할 때, 각 미소 면적 \(dA\)를 모두 합산하여 전체 면적을 구하는 것이 이중적분의 목적입니다.
         - 즉, \(\int_0^{\theta_{\text{max}}} \int_0^{r_{\text{max}}} f(r, \theta) \, r \, dr \, d\theta\)와 같이 표현되는 이중적분은 각 \(r\)에 대한 함수 값 \(f(r, \theta)\)와 면적 요소 \(r \, dr\)를 곱한 후, 이를 \(\theta\)에 대해 적분하여 총 면적을 구하는 과정입니다.

       

      2. 변화에 따른 적분:
         - \(r\)와 \(\theta\)가 각각의 구간에서 변화할 때, 그 변화에 따른 미소 면적을 구해 적분하는 것이므로, \(t\)의 총 변화(여기서는 \(\theta\)로 표현됨)에 따른 미소 면적의 총합으로 볼 수 있습니다.

       

      결론

      결국, 극좌표에서의 이중적분은 각 점의 미소 면적 \(dA\)를 합산하여 전체 면적을 구하는 과정입니다.

      이때 \(r \, dr \, d\theta\)는 면적 요소로 작용하며, 이는 각각의 \(r\)과 \(\theta\)의 변화에 따른 총 면적을 반영합니다.

      따라서 \(\int \int f(r, \theta) \, r \, dr \, d\theta\)는 미소 면적의 총합으로 볼 수 있습니다. 잘 이해하셨습니다!

      댓글
    • 1
      Profile 0
      세상의모든계산기
      2024.10.27 - 19:52 2024.10.27 - 19:40 #51562

      이중적분 \(\int_0^{2\pi} \int_0^{\sin(t)} \sqrt{1 - r^2} \cdot r \, dr \, dt\)에서 \(t\)의 변화에 따라 그래프의 변화를 연속적으로 보여주면


      import numpy as np
      import matplotlib.pyplot as plt
      from matplotlib.animation import FuncAnimation
      
      # 설정
      t_values = np.linspace(0, 2 * np.pi, 100)  # t의 변화 범위
      
      # 그래프 초기화
      fig, ax = plt.subplots(figsize=(8, 8))
      ax.set_xlim(-1.5, 1.5)
      ax.set_ylim(-1.5, 1.5)
      ax.set_aspect('equal')
      ax.set_title('Area under the curve for varying $t$')
      ax.set_xlabel('$x$')
      ax.set_ylabel('$y$')
      
      # 그래프에 사용할 점과 면적 표시
      line_r, = ax.plot([], [], color='blue', label='$r(t) = \sin(t)$')
      ax.legend()
      
      # 면적 다각형 리스트
      area_patches = []
      total_area = 0  # 총 면적 초기화
      area_text = ax.text(-1.4, 1.2, f'Total Area: {total_area:.2f}', fontsize=12)
      
      # 애니메이션 업데이트 함수
      def update(frame):
          global total_area  # 총 면적을 전역 변수로 설정
          t = t_values[frame]
          r = np.linspace(0, np.sin(t), 100)  # r 값 생성
          x = r * np.cos(t)  # x 좌표
          y = r * np.sin(t)  # y 좌표
      
          # 면적을 나타내는 다각형 생성
          area_patch = plt.Polygon(np.column_stack((x, y)), closed=True, color='lightblue', alpha=0.5)
          ax.add_patch(area_patch)  # 다각형 추가
          area_patches.append(area_patch)  # 면적 목록에 추가
      
          # 면적 계산 (부채꼴 면적 계산)
          segment_area = 0.5 * (np.sin(t) ** 2) * t  # t에 따른 면적
          total_area += segment_area  # 총 면적 업데이트
      
          # 선 업데이트
          line_r.set_data(np.array([0, x[-1]]), np.array([0, y[-1]]))
      
          # 면적 합계 텍스트 업데이트
          area_text.set_text(f'Total Area: {total_area:.2f}')
      
          return area_patches, line_r, area_text
      
      # 애니메이션 생성
      ani = FuncAnimation(fig, update, frames=len(t_values), blit=False, repeat=False)
      
      # 진행 표시줄 추가
      progress_ax = fig.add_axes([0.15, 0.1, 0.7, 0.05])  # 위치 조정
      progress_bar = plt.barh([0], [0], color='gray', height=0.1)  # 진행 표시줄
      progress_ax.set_xlim(0, len(t_values))
      progress_ax.set_ylim(-0.5, 0.5)
      progress_ax.axis('off')  # 축 숨기기
      
      # 진행 표시줄 레이블 추가
      start_label = progress_ax.text(-1, 0, 'Start: $t=0$', fontsize=10, ha='center')
      end_label = progress_ax.text(len(t_values)+1, 0, 'End: $t=2\pi$', fontsize=10, ha='center')
      
      # 애니메이션 프레임 업데이트
      def update_progress(frame):
          progress_bar[0].set_width(frame)  # 진행 표시줄 업데이트
          return progress_bar
      
      # 진행 표시줄 애니메이션
      ani_progress = FuncAnimation(fig, update_progress, frames=len(t_values), blit=False, repeat=False)
      
      plt.show()

       

      animation10.gif

      Attached file
      animation10.gif 594.6KB 22
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    4
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.