• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • norm, 노름? (feat. ChatGTP-4o)

    • Profile
      • 세상의모든계산기
      • 2024.07.19 - 17:46 2024.07.08 - 16:56 491 1

    수학에서 '노름'이라는 개념은 벡터, 행렬, 함수 등의 크기 또는 '강도'를 측정하는 데 사용되는 중요한 도구입니다. 다양한 노름의 정의와 특성은 다르지만, 공통적으로 몇 가지 핵심 특징을 가지고 있습니다.

     

    ### 노름의 공통 특징

     

    1. **크기 측정**: 노름은 벡터, 행렬, 함수 등의 크기를 나타내는 비음수 값으로 정의됩니다.
    2. **양의 성질**: 노름은 항상 0 이상의 값을 가지며, 해당 객체가 0인 경우에만 노름 값이 0이 됩니다.
    3. **삼각 부등식**: 노름은 삼각 부등식 성질을 만족합니다. 즉, 임의의 두 벡터 \( u \)와 \( v \)에 대해 \( ||u + v|| \leq ||u|| + ||v|| \)가 성립합니다.
    4. **스칼라 곱 규칙**: 노름은 스칼라 곱에 대해 \( ||\alpha u|| = |\alpha| ||u|| \)의 성질을 가집니다. 여기서 \( \alpha \)는 임의의 스칼라 값입니다.

     

    ### 다양한 종류의 노름

     

    1. **벡터 노름 (Vector Norm)**:
       - **유클리드 노름 (Euclidean Norm)**: 벡터의 각 성분 제곱의 합의 제곱근으로 계산됩니다. (L2)
       - **맨하탄 노름 (Manhattan Norm)**: 벡터의 각 성분 절댓값의 합으로 계산됩니다. (L1)
       - **p-노름 (p-Norm)**: 벡터의 각 성분 \( p \)제곱의 합의 \( 1/p \)제곱으로 계산됩니다. (Lp)

       - **∞-노름 (L-infinity-Norm, 최대값 노름)**: 2차원에서 이는 정사각형 형태로 표현됩니다. 단위원은 각 변의 길이가 2인 정사각형입니다. (L∞)

       - **0-노름 (0-Norm)**: 0이 아닌 원소의 개수. 따라서 연속적인 형태로 나타내기 힘듭니다.(L0)

    2. **행렬 노름 (Matrix Norm)**:
       - **프로베니우스 노름 (Frobenius Norm)**: 행렬의 각 성분 제곱의 합의 제곱근으로 계산됩니다.
       - **연산자 노름 (Operator Norm)**: 행렬을 벡터로 변환했을 때의 벡터 노름으로 계산됩니다.
       - **유도 노름 (Induced Norm)**: 다른 행렬 노름을 이용하여 정의됩니다.

    3. **함수 공간 노름 (Function Space Norm)**:
       - **L1 노름**: 함수의 각 지점에서의 절대값의 합으로 계산됩니다.
       - **L2 노름**: 함수 제곱의 적분값의 제곱근으로 계산됩니다.
       - **최대 노름 (Sup Norm)**: 함수의 최대 절대값으로 계산됩니다.

     

    ### 노름의 활용

     

    - **벡터 공간의 구조**: 노름은 벡터 공간의 완비성, 연속성 등을 판단하는 데 사용됩니다.
    - **오차 분석**: 수치 계산 과정에서 발생하는 오차를 분석하는 데 사용됩니다.
    - **최적화 문제**: 최적화 문제를 풀 때 해의 후보들을 비교하고 선택하는 데 사용됩니다.
    - **기계 학습**: 머신 러닝 알고리즘에서 모델의 복잡도를 제어하거나 특징들을 선택하는 데 사용됩니다.

     

    ### 통합적인 이해

     

    '노름'은 벡터, 행렬, 함수 등의 크기 또는 '강도'를 측정하고 비교하는 데 사용되는 중요한 수학적 도구입니다. 각 노름의 정의와 특성은 다르므로, 맥락에 맞게 적절한 노름을 선택하고 활용하는 것이 중요합니다. 노름에 대한 깊은 이해는 벡터 공간, 함수 분석, 수치 해석, 기계 학습 등 다양한 수학 분야 및 응용 분야에서 유용합니다.

     

    design-tool.png

    '노름(norm)'의 어원은 라틴어 "norma"에서 유래했습니다. "norma"는 원래 목수들이 사용하는 직각자를 의미하며, 어떤 것이 올바른지, 규범적인지 판단하는 기준을 뜻했습니다. 이 단어는 이후 프랑스어 "norme"를 거쳐 영어 "norm"으로 변형되었습니다.

    수학에서 '노름'이라는 용어는 이러한 어원적 의미를 반영하여, 벡터, 행렬, 함수 등의 크기나 '표준'을 측정하는 기준 또는 척도를 나타내는 데 사용됩니다. 노름은 주어진 수학적 객체의 길이, 크기 또는 강도를 측정하여, 이를 통해 다양한 수학적 분석과 계산을 가능하게 합니다.

     

    Attached file
    design-tool.png 10.7KB 32
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    AGI 자기 거버넌스 구조와 인간-AGI 관계 모델 (written by GEMINI & GPT) 46 1 2026 01.30   AI 시대, '기본소득'을 넘어 '기여소득'으로: 새로운 사회 계약을 향한 제언 - Written by Gemini 96 1 2026 01.28 쌀집계산기로 선형 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 114 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 171 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 515 10 2025 12.28

    세상의모든계산기 님의 최근 댓글

    V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다.  이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다.   2026 02.04 ​ A) 1*3*5*7*9 = 계산 945 ​ B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 ​ C) - 1 ÷ 5 + 1 = 1.0003348104468 ​ D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) ​ 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요.    2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다.  그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다.  2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.07.19 - 17:46 #44551

      그래프로 알아본 벡터 노름


      스크린샷 2024-07-19 174553.png

       

      import numpy as np
      import matplotlib.pyplot as plt
      
      def unit_circle(p, num_points=1000):
          t = np.linspace(0, 2*np.pi, num_points)
          x = np.sign(np.cos(t)) * np.abs(np.cos(t))**(2/p)
          y = np.sign(np.sin(t)) * np.abs(np.sin(t))**(2/p)
          return x, y
      
      plt.figure(figsize=(10, 10))
      
      # L1 Norm (Manhattan)
      x1, y1 = unit_circle(1)
      plt.plot(x1, y1, label='L1 Norm')
      
      # L2 Norm (Euclidean)
      x2, y2 = unit_circle(2)
      plt.plot(x2, y2, label='L2 Norm')
      
      # L4 Norm
      x4, y4 = unit_circle(4)
      plt.plot(x4, y4, label='L4 Norm')
      
      # L∞ Norm (Maximum)
      xinf, yinf = unit_circle(np.inf)
      plt.plot(xinf, yinf, label='L∞ Norm')
      
      plt.xlim(-1.1, 1.1)
      plt.ylim(-1.1, 1.1)
      plt.axhline(y=0, color='k', linestyle='--')
      plt.axvline(x=0, color='k', linestyle='--')
      plt.title('Unit Circles for Different Norms')
      plt.legend()
      plt.grid(True)
      plt.axis('equal')
      plt.show()

       

      Attached file
      스크린샷 2024-07-19 174553.png 84.9KB 12
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.