- TI nspire
[TI-nspire] 복소수 Complex number, 페이저 Phaser 관련 기본 입력 및 기능
1. 설정하기 (Document Settings)
복소수 관련하여 설정할 것은 다음 두가지 항목 입니다.

- Real or Complex Format : Real / Rectangular / Polar
- Angle : Degree / Radian / Gradian
복소수를 다뤄야 하기 때문에 1.에서 Real 로 두는 것은 바람직하지 않습니다.
ㄴ Rectangular(직교좌표) 또는 Polar(극좌표) 형식 중 하나를 선택해 주세요. (최종 결과값 형식에 영향을 미칩니다)
각도 설정은 디그리 / 라디안 중 주로 사용하는 것으로 결정하시면 됩니다만...
가급적이면 라디안으로 두는 것이 좋습니다.
아래 스샷처럼 세팅에 따라 결과값 형식이 딱 정해져 있습니다.
본인 취향에 맞게 세부 세팅할 방법은 없습니다.

2. 복소수 및 페이저 기호의 입력
※
입력 주의사항
ⓐ [TI-nspire] 에서 허수 기호 i 는 알파벳 키
로 입력하지 않고, 특수문자키
(혹은 카탈로그키
)를 이용해서 입력하여야 합니다.
ⓑ 교과서/문제집 등에서 사용하는 허수기호 j 는 공학용 계산기에서는 사용하지 않습니다. 허수기호는 i 입니다.
i →j 로 변수j에 복소수 i값을 저장한 후 j를 대신 활용할 수는 있긴 합니다만... 그렇다고 결과가 허수단위로서 j에 대해 정리되는 것은 아닙니다.
ⓒ 각도 기호 ∠ 는 
(위에서 2번째줄)에서 찾아 입력합니다. (별도의 단축키는 없습니다)
∠ 기호를 이용한 극좌표 형식은 반드시 전체를 괄호로 묶어야만 합니다.
(r∠θ)
- 자연대수 e : 【ex】 키나 특수문자키
조합으로 입력합니다. 알파벳 【e】 가 아닙니다.
3. 복소수 형식간 변환 (극좌표 vs 직교좌표)
▶Polar, ▶Rect 의 입력방법들 (아래 중 택1)
ⓐ 각각 


▶Polar, 


▶Rect
ⓑ 각각 


(방향키 연타로 찾기) 


(방향키 연타로 찾기)
ⓒ 【▶】 (변환기호) 찾아 입력하고 알파벳 키로 직접 입력 : 가능은 하지만 번거로움
- Degree 모드일 때 (Document Setting에서)

- Radian 모드일 때

4. 관련 함수

- abs()
- angle()
- conj()
- imag()
- real()
- P►Rx()
- P►Ry()
- R►Pθ()
- R►Pr()
5. 참고
댓글19
-
세상의모든계산기
허수기호(i) 나 자연대수기호(e)의 입력 빈도가 많다면,
1문자 알파벳(변수)에 저장하여, 대체입력하는 방법도 생각해 볼 수 있습니다.
-
1
세상의모든계산기

극좌표 형식에서 arctan 로 답이 나오는 이유는 각도값이 무리수이기 때문입니다. (대부분의 경우)
근사값 형태로 강제 계산하시면 됩니다.
[TI-nspire] 계산 모드 : 근사값 vs 참값 Calculation Mode : Approx vs Exact
- 1
- 2
- 3
- 1
- 1
-
1
세상의모든계산기
복소수에서 가장 중요한 공식 중 하나는 오일러 공식입니다.
$ e^{i\theta} = \cos(\theta) + i\sin(\theta) $
좌변 $ e^{i\theta} $에서 θ는 단위가 '각도(degree)'가 아닌 그냥 실수(real number), 즉 라디안 값으로 해석되는 무차원수이며,
θ가 반드시 라디안(radian) 단위일 때만 정확히 성립합니다.
그렇기 때문에 $ e^{j(30˚)} $ 처럼 쓰는 것은 잘못된 기술입니다.
- 1
- 1
세상의모든계산기 님의 최근 댓글
Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18