• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
      • 세상의 모든 계산기  
        • 자유(질문) 게시판  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기 2024.07.20 05:00

      유속과 전단력을 그래프로 나타내려면,

      먼저 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)와 전단력 \( \tau = \mu \left( -4y + 4 \right) \)를 그래프로 표현하면 됩니다.

      여기서 전단력은 점성계수 \( \mu \)에 비례합니다.

       

      import numpy as np
      import matplotlib.pyplot as plt
      
      # Define the height range
      y = np.linspace(0, 4, 400)
      
      # Define the velocity function
      v = -2 * y**2 + 4 * y
      
      # Define the shear stress function (assuming mu = 1 for simplicity)
      mu = 1
      tau = mu * (-4 * y + 4)
      
      # Plot the velocity profile
      plt.figure(figsize=(12, 6))
      
      plt.subplot(1, 2, 1)
      plt.plot(y, v, label='Velocity (v)')
      plt.axhline(0, color='gray', linewidth=0.5, linestyle='--')
      plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1')
      plt.title('Velocity Profile')
      plt.xlabel('Height (y)')
      plt.ylabel('Velocity (v)')
      plt.legend()
      plt.grid(True)
      
      # Plot the shear stress profile
      plt.subplot(1, 2, 2)
      plt.plot(y, tau, label='Shear Stress (τ)', color='orange')
      plt.axhline(0, color='gray', linewidth=0.5, linestyle='--')
      plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1')
      plt.title('Shear Stress Profile')
      plt.xlabel('Height (y)')
      plt.ylabel('Shear Stress (τ)')
      plt.legend()
      plt.grid(True)
      
      plt.tight_layout()
      plt.show()

       

      위 코드는 다음과 같이 작동합니다:

      1. \( y \)의 범위를 0에서 4까지 정의합니다.
      2. 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)를 계산합니다.
      3. 전단력 함수 \( \tau = \mu (-4y + 4) \)를 계산합니다. 여기서 \( \mu = 1 \)로 가정합니다.
      4. 두 개의 서브플롯을 만들어 유속 프로파일과 전단력 프로파일을 각각 그래프로 그립니다.

      위의 코드를 실행하면 유속과 전단력의 그래프가 나타납니다. 유속 그래프에서는 포물선 형태의 곡선을 볼 수 있으며, 전단력 그래프에서는 직선의 기울기가 -4인 그래프를 볼 수 있습니다. 

       

      이제 이 코드를 실행해 보겠습니다.

      image.png

      위 그래프는 주어진 조건에 따른 유속과 전단력을 나타낸 것입니다.

      1. **유속 프로파일** (왼쪽 그래프):
         - 유속 함수 \( v(y) = -2y^2 + 4y \)는 포물선 형태를 띠며, \( y = 1 \)에서 최대값을 가집니다.
         - \( y = 0 \) 및 \( y = 2 \)에서 유속은 0이 됩니다.

      2. **전단력 프로파일** (오른쪽 그래프):
         - 전단력 함수 \( \tau = \mu (-4y + 4) \)는 기울기가 -4인 직선입니다.
         - \( y = 1 \)에서 전단력이 0이 됩니다.

      이 그래프를 통해 유속이 최대가 되는 지점과 전단력이 0이 되는 지점을 명확하게 확인할 수 있습니다.

      사진 및 파일 첨부

      여기에 파일을 끌어 놓거나 왼쪽의 버튼을 클릭하세요.

      파일 용량 제한 : 0MB (허용 확장자 : *.*)

      업로드 중... (0%)

      0개 첨부 됨 ( / )


    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.