• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
      • 세상의 모든 계산기  
        • 자유(질문) 게시판  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계
    • [통계] 왜도 SKEWNESS, 첨도 KURTOSIS

    • Profile
      • 세상의모든계산기
        *.165.6.43
      • 2024.07.24 - 09:23 2015.10.18 - 19:34  1583  2

    왜도(skewness)와 첨도(kurtosis)는 통계학에서 데이터 분포의 형태를 설명하는 두 가지 중요한 척도입니다. 각각의 개념을 자세히 설명하면 다음과 같습니다:

    image.png

     

     

    1. 왜도 (Skewness)

     

    왜도는 데이터 분포의 비대칭성을 나타내는 척도입니다. 왜도의 값은 데이터가 평균을 중심으로 얼마나 비대칭적으로 분포되어 있는지를 나타냅니다. 왜도의 종류는 다음과 같습니다:

    - 양의 왜도 (Positive Skewness): 분포의 오른쪽 꼬리가 더 긴 경우입니다. 이 경우 데이터의 대부분이 평균보다 작은 값에 몰려 있으며, 평균보다 큰 값들이 일부 존재하게 됩니다. 양의 왜도의 값은 0보다 큽니다.

    - 음의 왜도 (Negative Skewness): 분포의 왼쪽 꼬리가 더 긴 경우입니다. 이 경우 데이터의 대부분이 평균보다 큰 값에 몰려 있으며, 평균보다 작은 값들이 일부 존재하게 됩니다. 음의 왜도의 값은 0보다 작습니다.

    - 대칭 (Symmetry): 분포가 좌우 대칭인 경우 왜도의 값은 0입니다. 이때, 평균, 중앙값, 최빈값이 거의 일치합니다.

    왜도의 공식은 다음과 같습니다:
    \[ \text{왜도} = \frac{E[(X - \mu)^3]}{\sigma^3} \]
    여기서 \( E \)는 기대값, \( X \)는 변수, \( \mu \)는 평균, \( \sigma \)는 표준편차입니다.

     

    ### 2. 첨도 (Kurtosis)

     

    첨도는 데이터 분포의 꼬리가 얼마나 두꺼운지 또는 뾰족한지를 나타내는 척도입니다. 첨도는 분포의 중심부와 꼬리 부분에서의 데이터 밀도를 설명하는데 유용합니다. 첨도의 종류는 다음과 같습니다:

    - 정규분포 (Mesokurtic): 정규분포와 같은 형태로, 첨도의 값이 0입니다. 보통 첨도가 3인 경우를 정규분포로 간주합니다.

    - 뾰족한 분포 (Leptokurtic): 중심부가 더 뾰족하고 꼬리가 두꺼운 분포로, 첨도의 값이 0보다 큽니다. 이 경우 극단적인 값들이 더 자주 나타납니다.

    - 평평한 분포 (Platykurtic): 중심부가 평평하고 꼬리가 얇은 분포로, 첨도의 값이 0보다 작습니다. 이 경우 극단적인 값들이 덜 자주 나타납니다.

    첨도의 공식은 다음과 같습니다:
    \[ \text{첨도} = \frac{E[(X - \mu)^4]}{\sigma^4} - 3 \]
    여기서 \( E \)는 기대값, \( X \)는 변수, \( \mu \)는 평균, \( \sigma \)는 표준편차입니다. 여기서 3을 빼는 이유는 정규분포의 첨도가 3이기 때문에 이를 기준으로 비교하기 위해서입니다.

     

    요약


    - 왜도 (Skewness): 데이터 분포의 비대칭성을 나타냄. 양의 왜도는 오른쪽 꼬리가 길고, 음의 왜도는 왼쪽 꼬리가 긴 분포.
    - 첨도 (Kurtosis): 데이터 분포의 꼬리와 중심부의 두께를 나타냄. 정규분포는 첨도가 0이며, 뾰족한 분포는 첨도가 양수, 평평한 분포는 첨도가 음수.

    이 두 척도는 데이터를 분석하고 이해하는 데 중요한 역할을 하며, 특히 이상치 탐지나 데이터의 특성을 이해하는 데 유용합니다.

     

     

    관련 자료

    http://www.hanbit.co.kr/preview/4122/sample.pdf

    ㄴ 이공계생을 위한 확률과 통계 preview

     

    왜도

    https://ko.wikipedia.org/wiki/%EB%B9%84%EB%8C%80%EC%B9%AD%EB%8F%84

     

    첨도

    https://ko.wikipedia.org/wiki/%EC%B2%A8%EB%8F%84

    0
    0
    Attached file
    sample.pdf 977.0KB 1,442image.png 3.1KB 10
    이 게시물을..
    • 세상의모든계산기 세상의모든계산기 Lv. 25

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

     댓글 2

      • Profile
      • 세상의모든계산기 (*.165.6.43) 2015.10.18 19:44 #comment_8565

        예제)
        이공계생을 위한 확률과 통계 preview (챕터1, 53Page)
        리스트 = {1, 3, 2, 0, 1, 1, 2, 3, 2, 4, 3}
        왜도 = 0
        첨도 ≒ 1.9388

        0
        댓글
      • Profile
      • 세상의모든계산기 (*.165.6.43) 2015.10.18 20:10 #comment_8568
        K-20151018-725792.png


        K-20151018-725888.png


        K-20151018-725942.png


        Attached file
        K-20151018-725792.png 19.7KB / 111 K-20151018-725888.png 11.5KB / 115 K-20151018-725942.png 14.9KB / 109
        0
        댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • 목록 목록
    • 목록
    2
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.