- 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계 ()
[확률] - 6/45 로또를 5게임을 선택 했을 때, 당첨 번호 6개 하나도 안맞을 확률은?
1. 게임간 숫자 중복 선택을 허용하지 않을 때
문제 요약
- 45개의 번호 중 6개가 1등 번호입니다.
- 5게임을 중복 없이 선택하면 총 30개의 번호가 선택됩니다.
- 이 30개 번호 중에 1등 번호가 하나도 포함되지 않을 확률을 구하려고 합니다.
접근 방식
1. **총 경우의 수:**
- 45개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{45}{30}\)입니다.
2. **바람직하지 않은 경우의 수:**
- 1등 번호 6개를 제외한 39개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{39}{30}\)입니다.
3. **확률 계산:**
- 확률은 \(\frac{\binom{39}{30}}{\binom{45}{30}}\)입니다.
계산
1. **총 경우의 수** \(\binom{45}{30}\) 계산:
\[
\binom{45}{30} = \frac{45!}{30! \times (45-30)!} = \frac{45!}{30! \times 15!}
\]
2. **바람직하지 않은 경우의 수** \(\binom{39}{30}\) 계산:
\[
\binom{39}{30} = \frac{39!}{30! \times (39-30)!} = \frac{39!}{30! \times 9!}
\]
3. **확률 계산**:
\[
P(\text{1등 번호 미포함}) = \frac{\binom{39}{30}}{\binom{45}{30}}
\]
수치 계산
- \(\binom{45}{30}\)의 값은 약 344,867,425,584 입니다.
- \(\binom{39}{30}\)의 값은 약 211,915,132 입니다.
따라서 확률은:
\[
P(\text{1등 번호 미포함}) = \frac{211,915,132}{344,867,425,584} \approx 0.00061448288901494
\]
이 확률은 약 0.061448288901494%입니다. 이는 30개의 숫자 중에 1등 번호가 하나도 포함되지 않을 확률이 매우 낮다는 것을 의미합니다.
통계적 검증
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
total_set = set(range(1, 46)) # 전체 집합
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
winning_numbers = set(random.sample(range(1, 46), 6))
# Choose 30 unique numbers from the total 45 numbers
chosen_30 = set(random.sample(sorted(total_set), 30))
# The remaining 15 numbers that are not chosen
remaining_numbers = total_set - chosen_30
# Check if the winning numbers are in the remaining 15 numbers
if set(winning_numbers).issubset(remaining_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after {simulations} simulations): {probability:.10f}")
결과
Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after 1000000 simulations): 0.0006410000
39C9 / 45C15 로 계산할 수 있음.
1~45중에서 15개의 숫자를 선택하는 전체 경우 수 45C15
15개 숫자 중 6개의 당첨 번호를 미리 비워 두고, 나머지 39개의 숫자 중 나머지 15-6개의 자리를 채우는 경우의 수 39C9
2. 게임간 숫자 중복 선택을 허용할 때
문제 정의
- 전체 숫자: 1부터 45까지 (N = 45)
- 각 게임에서 선택하는 숫자: 6개 (k = 6)
- 게임 수: 5 (m = 5)
- 당첨 번호: 6개
우리는 5게임 중 어떤 게임에서도 6개의 당첨 번호가 포함되지 않을 확률을 구하려고 합니다.
1. 각 게임에서 당첨 번호가 포함되지 않을 확률
하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다.
- 전체 조합 수: \(\binom{45}{6}\)
- 특정 6개의 당첨 번호를 포함하지 않는 조합 수: \(\binom{39}{6}\) (총 45개 숫자에서 6개를 제외한 39개 숫자 중에서 6개를 선택하는 조합)
따라서, 하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률은:
\[
P(\text{특정 번호 포함되지 않음}) = \frac{\binom{39}{6}}{\binom{45}{6}}
\]
2. 5게임 모두에서 당첨 번호가 포함되지 않을 확률
5게임 모두에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다. 각 게임이 독립적이라고 가정하면, 다음과 같이 계산할 수 있습니다:
\[
P(\text{5게임 모두에서 포함되지 않음}) = \left(\frac{\binom{39}{6}}{\binom{45}{6}}\right)^5
\]
3. 수식 계산
# 전체 조합 수 계산
- 전체 6개 숫자를 선택하는 조합의 수:
\[
\binom{45}{6} = \frac{45!}{6!(45-6)!} = 8{,}145{,}060
\]
# 특정 번호를 포함하지 않는 조합의 수
- 39개 숫자 중에서 6개를 선택하는 조합의 수:
\[
\binom{39}{6} = \frac{39!}{6!(39-6)!} = 3{,}262{,}623
\]
# 확률 계산
- 특정 번호가 포함되지 않을 확률:
\[
\frac{\binom{39}{6}}{\binom{45}{6}} = \frac{3{,}262{,}623}{8{,}145{,}060} \approx 0.4005
\]
- 5게임 모두에서 포함되지 않을 확률:
\[
\left(\frac{3{,}262{,}623}{8{,}145{,}060}\right)^5 \approx 0.010312477830338
\]
결론
따라서, 6개의 당첨 번호가 5게임 중 어디에도 포함되지 않을 확률은 약 0.01024 (즉, 약 1.024%)입니다.
통계적 검증
from scipy.special import comb
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
winning_numbers = set(random.sample(range(1, 46), 6))
# Initialize min and max length trackers
min_length = float('inf')
max_length = float('-inf')
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
# Generate 5 sets of 6 random numbers
chosen_numbers = [random.sample(range(1, 46), 6) for _ in range(5)]
# Flatten the list and remove duplicates
all_numbers = list(set([num for sublist in chosen_numbers for num in sublist]))
total_set = set(range(1, 46)) # 전체 집합
all_numbers_set = set(all_numbers) # all_numbers를 집합으로 변환
# 여집합 계산
all_other_numbers = total_set - all_numbers_set
# Update min and max length
current_length = len(all_numbers)
if current_length < min_length:
min_length = current_length
if current_length > max_length:
max_length = current_length
# Check if all winning numbers are included in the all_other_numbers
if set(winning_numbers).issubset(all_other_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Minimum length of all_numbers across simulations: {min_length}")
print(f"Maximum length of all_numbers across simulations: {max_length}")
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (after {simulations} simulations): {probability:.10f}")
Minimum length of all_numbers across simulations: 15
Maximum length of all_numbers across simulations: 30
Estimated probability of NOT including all winning numbers in any of the 5 sets (after 1000000 simulations): 0.0103890000
3. 반대의 경우 : 1등 번호를 모두 포함할 때
https://allcalc.org/45197
댓글1
-
세상의모든계산기
등위별 당첨 확률
등위 당첨방법 당첨확률 당첨금의 배분 비율 1등 6개 번호 일치 1 / 8,145,060
=0.00001228%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 75% 2등 5개 번호 일치
+ 보너스 번호일치1 / 1,357,510
=0.00007366%총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 3등 5개 번호 일치 1 / 35,724
=0.00279924%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 4등 4개 번호 일치 1 / 733
=0.136425645%
50,000원 5등 3개 번호 일치 1 / 45
=2.222222222%
5,000원
세상의모든계산기 님의 최근 댓글
fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24 HP Prime 에서 <Home> 73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치 <CAS> 21자리까지 나와서 이상하다 싶었는데, Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가? (전) 73.0495070584718691243 (21-digits ????) (후) 73.0495070584718500814401 (24-digits ????) 찾아보니 버그는 아니고, CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함. Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen). 출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657 일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임. 2025 10.23 khiCAS 에서 HP 39gII 에 올린 khiCAS는 254! 까지 계산 가능, 255! 부터는 ∞ fx-9750GIII 에 올린 khiCAS는 factorial(533) => 425760136423128437▷ // 정답, 10진수 1224자리 factorial(534) => Object too large 2025 10.23