• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 공학 ()
    • 디랙 델타 함수란? Dirac delta function

    • Profile
      • 세상의모든계산기
      • 2024.11.15 - 07:47 2024.11.13 - 15:51 524

    디랙 델타 함수(Dirac delta function)는 수학에서 중요한 개념으로, 물리학, 신호 처리, 제어 이론 등에서 자주 사용됩니다.

    이 함수는 전통적인 의미에서 "함수"라기보다는 분포(distribution) 또는 일반화된 함수(generalized function)라고 부를 수 있습니다. 디랙 델타 함수는 다음과 같은 특성을 가지고 있습니다:

     

    1. 정의 및 특성


    디랙 델타 함수는 \( \delta(x) \)로 표기하며, 그 주요 특성은 다음과 같습니다:

    - 영역 밖에서 0:
      \[
      \delta(x) = 0 \quad \text{(for } x \neq 0 \text{)}
      \]
      즉, \( \delta(x) \)는 \( x = 0 \)을 제외한 모든 \( x \)에서 0입니다.

    - 적분 값이 1:
      \[
      \int_{-\infty}^{\infty} \delta(x) \, dx = 1
      \]
      이는 디랙 델타 함수가 "무한히 좁고 무한히 높은" 형태를 가지면서, 전체적으로 적분한 값이 1이 되도록 정의된다는 것을 의미합니다. 이 성질은 마치 특정 점에서 "무한한" 값을 가지지만, 전체 면적은 1인 함수처럼 행동합니다.

    - "샘플링" 성질:
      디랙 델타 함수는 "샘플링" 또는 "평균화"라는 특성을 가집니다. 즉, 어떤 함수 \( f(x) \)와 곱해 적분할 때, 디랙 델타 함수는 \( x = 0 \)에서의 함수 값을 추출하는 역할을 합니다:
      \[
      \int_{-\infty}^{\infty} f(x) \delta(x - a) \, dx = f(a)
      \]
      여기서 \( \delta(x - a) \)는 \( x = a \)에서 "모든" 값을 집중시키는 함수로, \( f(x) \)의 \( x = a \)에서의 값을 추출합니다.

     

    2. 시각화 및 해석


    디랙 델타 함수는 다음과 같은 특성을 지닌 매우 특이한 함수입니다:
    - 무한히 좁고 높은 함수: \( \delta(x) \)는 \( x = 0 \)에서 무한히 큰 값을 가지며, 그 외의 점에서는 0입니다. 그러나 그 "넓이"는 유한하며 정확히 1입니다. 이는 물리적으로 "점 질량" 또는 "점 전하"와 같은 개념을 모델링하는 데 유용합니다.

     

    3. 용도


    디랙 델타 함수는 여러 가지 분야에서 중요하게 사용됩니다:

    - 신호 처리: 임펄스 응답을 표현할 때 사용됩니다. 예를 들어, 디지털 시스템이나 회로에서의 응답을 분석할 때 사용됩니다.
      
    - 물리학: 점 질량, 점 전하 등을 모델링할 때 사용됩니다. 예를 들어, 한 점에서의 힘을 나타낼 때 힘 함수로 디랙 델타 함수가 사용됩니다.

    - 미분 방정식: 초기 조건이나 특이한 외부 자극을 표현할 때 유용하게 사용됩니다. 예를 들어, 전자기학에서 전하 분포가 점으로 집중되어 있을 때 디랙 델타 함수로 나타낼 수 있습니다.

     

    4. 형태


    디랙 델타 함수는 때때로 다음과 같이 정의됩니다:

    \[
    \delta(x) = \lim_{\epsilon \to 0} \frac{1}{\sqrt{\pi \epsilon}} e^{-\frac{x^2}{\epsilon}}
    \]

    이 식은 \( \delta(x) \)를 가우시안 함수로 근사하는 방법입니다. 이 근사는 \( \epsilon \)이 0에 가까워질수록 \( \delta(x) \)의 특성과 일치합니다.

     

    5. 푸리에 변환에서의 역할


    디랙 델타 함수는 푸리에 분석에서 매우 중요한 역할을 합니다. 예를 들어, 푸리에 변환에서 \( f(x) = 1 \)의 푸리에 변환이 디랙 델타 함수 \( 2\pi \delta(\omega) \)로 나오는 이유는, 일정한 값 1을 가진 함수가 모든 주파수 성분을 "갖는" 것과 유사하기 때문입니다.

     

    요약


    디랙 델타 함수는 전통적인 함수의 개념을 넘어서는 분포로, "점에서의 집중된 에너지"를 수학적으로 표현하는 도구입니다. 주로 물리학, 신호 처리, 그리고 수학적인 모델링에서 중요한 역할을 합니다.

    Attached file
    image_fx_.jpg.png 462.9KB 17
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    [ticalc.org 펌] Gamma & Zeta function +more. 감마 제타 함수 외 76 2 2025 10.29 [fx-9860] 커서 모양 설명 37 2025 10.28 SHARP EL-738XT, TVM Solver 항목 입력 순서에 따라 결과값이 달라진다면? 58 2 2025 10.26 CASIO 모델명 fx-290A(?) fx-375ES A(?) 56 2025 10.26 fmax =함수의 최대값일 때의 x값, fmin =함수의 최소값일 때의 x값 81 1 2025 10.26

    세상의모든계산기 님의 최근 댓글

    2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요.   영상 찾아보니 이 가능성이 가장 높은 듯 합니다.  https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요.  2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263   sgn(x)   내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기  2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다.   모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3),  48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28
    글쓴이의 서명작성글 감추기 
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.