- 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계 ()
[확률] - 6/45 로또를 5게임을 선택 했을 때, 당첨 번호 6개 하나도 안맞을 확률은?
1. 게임간 숫자 중복 선택을 허용하지 않을 때
문제 요약
- 45개의 번호 중 6개가 1등 번호입니다.
- 5게임을 중복 없이 선택하면 총 30개의 번호가 선택됩니다.
- 이 30개 번호 중에 1등 번호가 하나도 포함되지 않을 확률을 구하려고 합니다.
접근 방식
1. **총 경우의 수:**
- 45개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{45}{30}\)입니다.
2. **바람직하지 않은 경우의 수:**
- 1등 번호 6개를 제외한 39개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{39}{30}\)입니다.
3. **확률 계산:**
- 확률은 \(\frac{\binom{39}{30}}{\binom{45}{30}}\)입니다.
계산
1. **총 경우의 수** \(\binom{45}{30}\) 계산:
\[
\binom{45}{30} = \frac{45!}{30! \times (45-30)!} = \frac{45!}{30! \times 15!}
\]
2. **바람직하지 않은 경우의 수** \(\binom{39}{30}\) 계산:
\[
\binom{39}{30} = \frac{39!}{30! \times (39-30)!} = \frac{39!}{30! \times 9!}
\]
3. **확률 계산**:
\[
P(\text{1등 번호 미포함}) = \frac{\binom{39}{30}}{\binom{45}{30}}
\]
수치 계산
- \(\binom{45}{30}\)의 값은 약 344,867,425,584 입니다.
- \(\binom{39}{30}\)의 값은 약 211,915,132 입니다.
따라서 확률은:
\[
P(\text{1등 번호 미포함}) = \frac{211,915,132}{344,867,425,584} \approx 0.00061448288901494
\]
이 확률은 약 0.061448288901494%입니다. 이는 30개의 숫자 중에 1등 번호가 하나도 포함되지 않을 확률이 매우 낮다는 것을 의미합니다.
통계적 검증
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
total_set = set(range(1, 46)) # 전체 집합
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
winning_numbers = set(random.sample(range(1, 46), 6))
# Choose 30 unique numbers from the total 45 numbers
chosen_30 = set(random.sample(sorted(total_set), 30))
# The remaining 15 numbers that are not chosen
remaining_numbers = total_set - chosen_30
# Check if the winning numbers are in the remaining 15 numbers
if set(winning_numbers).issubset(remaining_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after {simulations} simulations): {probability:.10f}")
결과
Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after 1000000 simulations): 0.0006410000
39C9 / 45C15 로 계산할 수 있음.
1~45중에서 15개의 숫자를 선택하는 전체 경우 수 45C15
15개 숫자 중 6개의 당첨 번호를 미리 비워 두고, 나머지 39개의 숫자 중 나머지 15-6개의 자리를 채우는 경우의 수 39C9
2. 게임간 숫자 중복 선택을 허용할 때
문제 정의
- 전체 숫자: 1부터 45까지 (N = 45)
- 각 게임에서 선택하는 숫자: 6개 (k = 6)
- 게임 수: 5 (m = 5)
- 당첨 번호: 6개
우리는 5게임 중 어떤 게임에서도 6개의 당첨 번호가 포함되지 않을 확률을 구하려고 합니다.
1. 각 게임에서 당첨 번호가 포함되지 않을 확률
하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다.
- 전체 조합 수: \(\binom{45}{6}\)
- 특정 6개의 당첨 번호를 포함하지 않는 조합 수: \(\binom{39}{6}\) (총 45개 숫자에서 6개를 제외한 39개 숫자 중에서 6개를 선택하는 조합)
따라서, 하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률은:
\[
P(\text{특정 번호 포함되지 않음}) = \frac{\binom{39}{6}}{\binom{45}{6}}
\]
2. 5게임 모두에서 당첨 번호가 포함되지 않을 확률
5게임 모두에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다. 각 게임이 독립적이라고 가정하면, 다음과 같이 계산할 수 있습니다:
\[
P(\text{5게임 모두에서 포함되지 않음}) = \left(\frac{\binom{39}{6}}{\binom{45}{6}}\right)^5
\]
3. 수식 계산
# 전체 조합 수 계산
- 전체 6개 숫자를 선택하는 조합의 수:
\[
\binom{45}{6} = \frac{45!}{6!(45-6)!} = 8{,}145{,}060
\]
# 특정 번호를 포함하지 않는 조합의 수
- 39개 숫자 중에서 6개를 선택하는 조합의 수:
\[
\binom{39}{6} = \frac{39!}{6!(39-6)!} = 3{,}262{,}623
\]
# 확률 계산
- 특정 번호가 포함되지 않을 확률:
\[
\frac{\binom{39}{6}}{\binom{45}{6}} = \frac{3{,}262{,}623}{8{,}145{,}060} \approx 0.4005
\]
- 5게임 모두에서 포함되지 않을 확률:
\[
\left(\frac{3{,}262{,}623}{8{,}145{,}060}\right)^5 \approx 0.010312477830338
\]
결론
따라서, 6개의 당첨 번호가 5게임 중 어디에도 포함되지 않을 확률은 약 0.01024 (즉, 약 1.024%)입니다.
통계적 검증
from scipy.special import comb
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
winning_numbers = set(random.sample(range(1, 46), 6))
# Initialize min and max length trackers
min_length = float('inf')
max_length = float('-inf')
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
# Generate 5 sets of 6 random numbers
chosen_numbers = [random.sample(range(1, 46), 6) for _ in range(5)]
# Flatten the list and remove duplicates
all_numbers = list(set([num for sublist in chosen_numbers for num in sublist]))
total_set = set(range(1, 46)) # 전체 집합
all_numbers_set = set(all_numbers) # all_numbers를 집합으로 변환
# 여집합 계산
all_other_numbers = total_set - all_numbers_set
# Update min and max length
current_length = len(all_numbers)
if current_length < min_length:
min_length = current_length
if current_length > max_length:
max_length = current_length
# Check if all winning numbers are included in the all_other_numbers
if set(winning_numbers).issubset(all_other_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Minimum length of all_numbers across simulations: {min_length}")
print(f"Maximum length of all_numbers across simulations: {max_length}")
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (after {simulations} simulations): {probability:.10f}")
Minimum length of all_numbers across simulations: 15
Maximum length of all_numbers across simulations: 30
Estimated probability of NOT including all winning numbers in any of the 5 sets (after 1000000 simulations): 0.0103890000
3. 반대의 경우 : 1등 번호를 모두 포함할 때
https://allcalc.org/45197
댓글1
-
세상의모든계산기
등위별 당첨 확률
등위 당첨방법 당첨확률 당첨금의 배분 비율 1등 6개 번호 일치 1 / 8,145,060
=0.00001228%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 75% 2등 5개 번호 일치
+ 보너스 번호일치1 / 1,357,510
=0.00007366%총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 3등 5개 번호 일치 1 / 35,724
=0.00279924%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 4등 4개 번호 일치 1 / 733
=0.136425645%
50,000원 5등 3개 번호 일치 1 / 45
=2.222222222%
5,000원
세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28