• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계 ()
    • [확률] - 6/45 로또를 5게임을 선택 했을 때, 당첨 번호 6개 하나도 안맞을 확률은?

    • Profile
      • 세상의모든계산기
      • 2024.07.31 - 08:03 2024.07.30 - 11:08 552 1

    1. 게임간 숫자 중복 선택을 허용하지 않을 때 

     

    문제 요약


    - 45개의 번호 중 6개가 1등 번호입니다.
    - 5게임을 중복 없이 선택하면 총 30개의 번호가 선택됩니다.
    - 이 30개 번호 중에 1등 번호가 하나도 포함되지 않을 확률을 구하려고 합니다.

     

    접근 방식

    1. **총 경우의 수:**
       - 45개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{45}{30}\)입니다.

    2. **바람직하지 않은 경우의 수:**
       - 1등 번호 6개를 제외한 39개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{39}{30}\)입니다.

    3. **확률 계산:**
       - 확률은 \(\frac{\binom{39}{30}}{\binom{45}{30}}\)입니다.

     

    계산

    1. **총 경우의 수** \(\binom{45}{30}\) 계산:

    \[
    \binom{45}{30} = \frac{45!}{30! \times (45-30)!} = \frac{45!}{30! \times 15!}
    \]

    2. **바람직하지 않은 경우의 수** \(\binom{39}{30}\) 계산:

    \[
    \binom{39}{30} = \frac{39!}{30! \times (39-30)!} = \frac{39!}{30! \times 9!}
    \]

    3. **확률 계산**:

    \[
    P(\text{1등 번호 미포함}) = \frac{\binom{39}{30}}{\binom{45}{30}}
    \]

     

    수치 계산

    - \(\binom{45}{30}\)의 값은 약 344,867,425,584 입니다.
    - \(\binom{39}{30}\)의 값은 약 211,915,132 입니다.

    따라서 확률은:

    \[
    P(\text{1등 번호 미포함}) = \frac{211,915,132}{344,867,425,584} \approx 0.00061448288901494
    \]

    이 확률은 약 0.061448288901494%입니다. 이는 30개의 숫자 중에 1등 번호가 하나도 포함되지 않을 확률이 매우 낮다는 것을 의미합니다.

     

    통계적 검증

    import random
    import time
    
    # Simulate lottery draws (number of simulations)
    simulations = 1000000
    progress_interval = simulations // 10  # Update progress every 1% of total simulations
    
    favorable_cases = 0  # Initialize inside the loop
    total_set = set(range(1, 46))  # 전체 집합
    
    start_time = time.time()
    
    for i in range(simulations):
        # Winning numbers (replace with actual winning numbers if desired)
        winning_numbers = set(random.sample(range(1, 46), 6))
    
        # Choose 30 unique numbers from the total 45 numbers
        chosen_30 = set(random.sample(sorted(total_set), 30))
    
        # The remaining 15 numbers that are not chosen
        remaining_numbers = total_set - chosen_30
    
        # Check if the winning numbers are in the remaining 15 numbers
        if set(winning_numbers).issubset(remaining_numbers):
            favorable_cases += 1
    
        # Print progress
        if (i + 1) % progress_interval == 0:
            elapsed_time = time.time() - start_time
            percentage = (i + 1) / simulations * 100
            estimated_total_time = (elapsed_time / (i + 1)) * simulations
            remaining_time = estimated_total_time - elapsed_time
            print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
    
    # Probability estimation
    probability = favorable_cases / simulations
    
    # Print final results
    print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after {simulations} simulations): {probability:.10f}")

     

    결과 

    Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after 1000000 simulations): 0.0006410000
     

     

    - 5개 게임에 포함되지 않는 모든 번호(15개)를 기준으로 보면 
    39C9 / 45C15 로 계산할 수 있음.
    1~45중에서 15개의 숫자를 선택하는 전체 경우 수 45C15
    15개 숫자 중 6개의 당첨 번호를 미리 비워 두고, 나머지 39개의 숫자 중 나머지 15-6개의 자리를 채우는 경우의 수 39C9

     


    2. 게임간 숫자 중복 선택을 허용할 때

     

     

     

     문제 정의

    - 전체 숫자: 1부터 45까지 (N = 45)
    - 각 게임에서 선택하는 숫자: 6개 (k = 6)
    - 게임 수: 5 (m = 5)
    - 당첨 번호: 6개

    우리는 5게임 중 어떤 게임에서도 6개의 당첨 번호가 포함되지 않을 확률을 구하려고 합니다.

     

     1. 각 게임에서 당첨 번호가 포함되지 않을 확률

    하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다. 

    - 전체 조합 수: \(\binom{45}{6}\)
    - 특정 6개의 당첨 번호를 포함하지 않는 조합 수: \(\binom{39}{6}\) (총 45개 숫자에서 6개를 제외한 39개 숫자 중에서 6개를 선택하는 조합)

    따라서, 하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률은:

    \[
    P(\text{특정 번호 포함되지 않음}) = \frac{\binom{39}{6}}{\binom{45}{6}}
    \]

     

     2. 5게임 모두에서 당첨 번호가 포함되지 않을 확률

    5게임 모두에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다. 각 게임이 독립적이라고 가정하면, 다음과 같이 계산할 수 있습니다:

    \[
    P(\text{5게임 모두에서 포함되지 않음}) = \left(\frac{\binom{39}{6}}{\binom{45}{6}}\right)^5
    \]

     

     

     3. 수식 계산

    # 전체 조합 수 계산
    - 전체 6개 숫자를 선택하는 조합의 수:

    \[
    \binom{45}{6} = \frac{45!}{6!(45-6)!} = 8{,}145{,}060
    \]

    # 특정 번호를 포함하지 않는 조합의 수
    - 39개 숫자 중에서 6개를 선택하는 조합의 수:

    \[
    \binom{39}{6} = \frac{39!}{6!(39-6)!} = 3{,}262{,}623
    \]

    # 확률 계산
    - 특정 번호가 포함되지 않을 확률:

    \[
    \frac{\binom{39}{6}}{\binom{45}{6}} = \frac{3{,}262{,}623}{8{,}145{,}060} \approx 0.4005
    \]

    - 5게임 모두에서 포함되지 않을 확률:

    \[
    \left(\frac{3{,}262{,}623}{8{,}145{,}060}\right)^5 \approx 0.010312477830338
    \]

     

     결론

    따라서, 6개의 당첨 번호가 5게임 중 어디에도 포함되지 않을 확률은 약 0.01024 (즉, 약 1.024%)입니다.

     

     통계적 검증

    from scipy.special import comb
    import random
    import time
    
    # Simulate lottery draws (number of simulations)
    simulations = 1000000
    progress_interval = simulations // 10  # Update progress every 1% of total simulations
    
    favorable_cases = 0  # Initialize inside the loop
    winning_numbers = set(random.sample(range(1, 46), 6))
    
    # Initialize min and max length trackers
    min_length = float('inf')
    max_length = float('-inf')
    
    start_time = time.time()
    
    for i in range(simulations):
        # Winning numbers (replace with actual winning numbers if desired)
    
        # Generate 5 sets of 6 random numbers
        chosen_numbers = [random.sample(range(1, 46), 6) for _ in range(5)]
    
        # Flatten the list and remove duplicates
        all_numbers = list(set([num for sublist in chosen_numbers for num in sublist]))
        total_set = set(range(1, 46))  # 전체 집합
        all_numbers_set = set(all_numbers)  # all_numbers를 집합으로 변환
    
        # 여집합 계산
        all_other_numbers = total_set - all_numbers_set
    
        # Update min and max length
        current_length = len(all_numbers)
        if current_length < min_length:
            min_length = current_length
        if current_length > max_length:
            max_length = current_length
    
        # Check if all winning numbers are included in the all_other_numbers
        if set(winning_numbers).issubset(all_other_numbers):
            favorable_cases += 1
    
        # Print progress
        if (i + 1) % progress_interval == 0:
            elapsed_time = time.time() - start_time
            percentage = (i + 1) / simulations * 100
            estimated_total_time = (elapsed_time / (i + 1)) * simulations
            remaining_time = estimated_total_time - elapsed_time
            print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
    
    # Probability estimation
    probability = favorable_cases / simulations
    
    # Print final results
    print(f"Minimum length of all_numbers across simulations: {min_length}")
    print(f"Maximum length of all_numbers across simulations: {max_length}")
    print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (after {simulations} simulations): {probability:.10f}")

    Minimum length of all_numbers across simulations: 15
    Maximum length of all_numbers across simulations: 30
    Estimated probability of NOT including all winning numbers in any of the 5 sets (after 1000000 simulations): 0.0103890000

     


    3. 반대의 경우 : 1등 번호를 모두 포함할 때

    https://allcalc.org/45197

    Attached file
    image.png 4.9KB 21
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    쌀집계산기로 선형 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 53 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 94 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 360 10 2025 12.28 xe(rhymix) 짧은주소 사용 중 리디렉션으로 인한 '색인 생성 안됨' 문제 해결중 152 1 2025 12.18 샤프 계산기(EL-W506T, EL-5500X 등) 정적분 계산시 오차 주의 - 정적분 정밀도 높이기 195 2 2025 12.11

    세상의모든계산기 님의 최근 댓글

    Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739   3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다.   4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다.   x, y 값을 이용해 최종 결과를 구합니다.  2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데,  버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고,  【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨.    ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18
    글쓴이의 서명작성글 감추기 

    댓글1

    • Profile 0
      세상의모든계산기
      2024.07.30 - 20:38 2024.07.30 - 20:34 #45329

      등위별 당첨 확률

       

      등위 당첨방법 당첨확률 당첨금의 배분 비율
      1등 6개 번호 일치

      1 / 8,145,060

      =0.00001228%

      총 당첨금 중 4등, 5등 금액을 제외한 금액의 75%
      2등 5개 번호 일치
      + 보너스 번호일치
      1 / 1,357,510
      =0.00007366% 
      총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5%
      3등 5개 번호 일치

      1 / 35,724

      =0.00279924%

      총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5%
      4등 4개 번호 일치

      1 / 733

      =0.136425645%

      50,000원
      5등 3개 번호 일치

      1 / 45

      =2.222222222%

      5,000원
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    1
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.