- 세상의 모든 계산기 수학, 과학, 공학 이야기 확률통계 ()
[확률] - 6/45 로또를 5게임을 선택 했을 때, 당첨 번호 6개 하나도 안맞을 확률은?
1. 게임간 숫자 중복 선택을 허용하지 않을 때
문제 요약
- 45개의 번호 중 6개가 1등 번호입니다.
- 5게임을 중복 없이 선택하면 총 30개의 번호가 선택됩니다.
- 이 30개 번호 중에 1등 번호가 하나도 포함되지 않을 확률을 구하려고 합니다.
접근 방식
1. **총 경우의 수:**
- 45개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{45}{30}\)입니다.
2. **바람직하지 않은 경우의 수:**
- 1등 번호 6개를 제외한 39개 숫자 중 30개를 선택하는 경우의 수는 \(\binom{39}{30}\)입니다.
3. **확률 계산:**
- 확률은 \(\frac{\binom{39}{30}}{\binom{45}{30}}\)입니다.
계산
1. **총 경우의 수** \(\binom{45}{30}\) 계산:
\[
\binom{45}{30} = \frac{45!}{30! \times (45-30)!} = \frac{45!}{30! \times 15!}
\]
2. **바람직하지 않은 경우의 수** \(\binom{39}{30}\) 계산:
\[
\binom{39}{30} = \frac{39!}{30! \times (39-30)!} = \frac{39!}{30! \times 9!}
\]
3. **확률 계산**:
\[
P(\text{1등 번호 미포함}) = \frac{\binom{39}{30}}{\binom{45}{30}}
\]
수치 계산
- \(\binom{45}{30}\)의 값은 약 344,867,425,584 입니다.
- \(\binom{39}{30}\)의 값은 약 211,915,132 입니다.
따라서 확률은:
\[
P(\text{1등 번호 미포함}) = \frac{211,915,132}{344,867,425,584} \approx 0.00061448288901494
\]
이 확률은 약 0.061448288901494%입니다. 이는 30개의 숫자 중에 1등 번호가 하나도 포함되지 않을 확률이 매우 낮다는 것을 의미합니다.
통계적 검증
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
total_set = set(range(1, 46)) # 전체 집합
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
winning_numbers = set(random.sample(range(1, 46), 6))
# Choose 30 unique numbers from the total 45 numbers
chosen_30 = set(random.sample(sorted(total_set), 30))
# The remaining 15 numbers that are not chosen
remaining_numbers = total_set - chosen_30
# Check if the winning numbers are in the remaining 15 numbers
if set(winning_numbers).issubset(remaining_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after {simulations} simulations): {probability:.10f}")
결과
Estimated probability of NOT including all winning numbers in any of the 5 sets (without replacement, after 1000000 simulations): 0.0006410000
39C9 / 45C15 로 계산할 수 있음.
1~45중에서 15개의 숫자를 선택하는 전체 경우 수 45C15
15개 숫자 중 6개의 당첨 번호를 미리 비워 두고, 나머지 39개의 숫자 중 나머지 15-6개의 자리를 채우는 경우의 수 39C9
2. 게임간 숫자 중복 선택을 허용할 때
문제 정의
- 전체 숫자: 1부터 45까지 (N = 45)
- 각 게임에서 선택하는 숫자: 6개 (k = 6)
- 게임 수: 5 (m = 5)
- 당첨 번호: 6개
우리는 5게임 중 어떤 게임에서도 6개의 당첨 번호가 포함되지 않을 확률을 구하려고 합니다.
1. 각 게임에서 당첨 번호가 포함되지 않을 확률
하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다.
- 전체 조합 수: \(\binom{45}{6}\)
- 특정 6개의 당첨 번호를 포함하지 않는 조합 수: \(\binom{39}{6}\) (총 45개 숫자에서 6개를 제외한 39개 숫자 중에서 6개를 선택하는 조합)
따라서, 하나의 게임에서 특정 6개의 당첨 번호가 포함되지 않을 확률은:
\[
P(\text{특정 번호 포함되지 않음}) = \frac{\binom{39}{6}}{\binom{45}{6}}
\]
2. 5게임 모두에서 당첨 번호가 포함되지 않을 확률
5게임 모두에서 특정 6개의 당첨 번호가 포함되지 않을 확률을 계산합니다. 각 게임이 독립적이라고 가정하면, 다음과 같이 계산할 수 있습니다:
\[
P(\text{5게임 모두에서 포함되지 않음}) = \left(\frac{\binom{39}{6}}{\binom{45}{6}}\right)^5
\]
3. 수식 계산
# 전체 조합 수 계산
- 전체 6개 숫자를 선택하는 조합의 수:
\[
\binom{45}{6} = \frac{45!}{6!(45-6)!} = 8{,}145{,}060
\]
# 특정 번호를 포함하지 않는 조합의 수
- 39개 숫자 중에서 6개를 선택하는 조합의 수:
\[
\binom{39}{6} = \frac{39!}{6!(39-6)!} = 3{,}262{,}623
\]
# 확률 계산
- 특정 번호가 포함되지 않을 확률:
\[
\frac{\binom{39}{6}}{\binom{45}{6}} = \frac{3{,}262{,}623}{8{,}145{,}060} \approx 0.4005
\]
- 5게임 모두에서 포함되지 않을 확률:
\[
\left(\frac{3{,}262{,}623}{8{,}145{,}060}\right)^5 \approx 0.010312477830338
\]
결론
따라서, 6개의 당첨 번호가 5게임 중 어디에도 포함되지 않을 확률은 약 0.01024 (즉, 약 1.024%)입니다.
통계적 검증
from scipy.special import comb
import random
import time
# Simulate lottery draws (number of simulations)
simulations = 1000000
progress_interval = simulations // 10 # Update progress every 1% of total simulations
favorable_cases = 0 # Initialize inside the loop
winning_numbers = set(random.sample(range(1, 46), 6))
# Initialize min and max length trackers
min_length = float('inf')
max_length = float('-inf')
start_time = time.time()
for i in range(simulations):
# Winning numbers (replace with actual winning numbers if desired)
# Generate 5 sets of 6 random numbers
chosen_numbers = [random.sample(range(1, 46), 6) for _ in range(5)]
# Flatten the list and remove duplicates
all_numbers = list(set([num for sublist in chosen_numbers for num in sublist]))
total_set = set(range(1, 46)) # 전체 집합
all_numbers_set = set(all_numbers) # all_numbers를 집합으로 변환
# 여집합 계산
all_other_numbers = total_set - all_numbers_set
# Update min and max length
current_length = len(all_numbers)
if current_length < min_length:
min_length = current_length
if current_length > max_length:
max_length = current_length
# Check if all winning numbers are included in the all_other_numbers
if set(winning_numbers).issubset(all_other_numbers):
favorable_cases += 1
# Print progress
if (i + 1) % progress_interval == 0:
elapsed_time = time.time() - start_time
percentage = (i + 1) / simulations * 100
estimated_total_time = (elapsed_time / (i + 1)) * simulations
remaining_time = estimated_total_time - elapsed_time
print(f"Progress: {percentage:.2f}% | Elapsed Time: {elapsed_time:.2f}s | Estimated Remaining Time: {remaining_time:.2f}s")
# Probability estimation
probability = favorable_cases / simulations
# Print final results
print(f"Minimum length of all_numbers across simulations: {min_length}")
print(f"Maximum length of all_numbers across simulations: {max_length}")
print(f"Estimated probability of NOT including all winning numbers in any of the 5 sets (after {simulations} simulations): {probability:.10f}")
Minimum length of all_numbers across simulations: 15
Maximum length of all_numbers across simulations: 30
Estimated probability of NOT including all winning numbers in any of the 5 sets (after 1000000 simulations): 0.0103890000
3. 반대의 경우 : 1등 번호를 모두 포함할 때
https://allcalc.org/45197
댓글1
-
세상의모든계산기
등위별 당첨 확률
등위 당첨방법 당첨확률 당첨금의 배분 비율 1등 6개 번호 일치 1 / 8,145,060
=0.00001228%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 75% 2등 5개 번호 일치
+ 보너스 번호일치1 / 1,357,510
=0.00007366%총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 3등 5개 번호 일치 1 / 35,724
=0.00279924%
총 당첨금 중 4등, 5등 금액을 제외한 금액의 12.5% 4등 4개 번호 일치 1 / 733
=0.136425645%
50,000원 5등 3개 번호 일치 1 / 45
=2.222222222%
5,000원
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 '주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다'는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 '두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니, 원하는 답이 나오지 않는 상황이 발생하였다.'고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형이 됩니다. ㄴ 꼭 변형해야하는 것은 아니지만, 이것이 알아보기 쉽기 때문에 변형시키는 것입니다. 변경하지 않은 2개 조건의 식(con1) 을 이용해 위와 같이 하나의 y & z 1차 방정식을 유도할 수 있는데요. 변경하는 나머지 1개의 방정식이 con1에서 유도된 방정식과 동일하다면 하나의 답이 구해지지 않는 상황이 발생하는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30