- 세상의 모든 계산기 수학, 과학, 공학 이야기 공학 ()
[문제] 점성유체 - 전단력이 0이 되는 지점의 높이는?
문제:
바닥으로부터 높이 \( y \)(m)일 때 유속이 \( v(y) = -2y^2 + 4y\) (m/s)인 점성유체가 흐르고 있습니다.
이 유체의 전단력이 0이 되는 지점까지의 높이는 얼마입니까?
1. \( 1 \)
2. \( 2 \)
3. \( 3 \)
4. \( 4 \)
해설:
유속이 \( v(y) = -2y^2 + 4y \)로 주어졌을 때, 전단력은 유체의 점성에 의한 힘으로, 뉴턴의 점성 법칙에 의해 다음과 같이 주어집니다:
\[ \tau = \mu \frac{dv}{dy} \]
여기서 \( \mu \)는 유체의 점성계수입니다.
유속 분포에 따라 \( \frac{dv}{dy} \)를 구하면:
\[ \frac{dv}{dy} = \frac{d}{dy} \left( -2y^2 + 4y \right) = -4y + 4 \]
전단력이 0이 되는 지점을 찾기 위해 \( \tau = 0 \)이 되는 \( y \)값을 찾습니다:
\[ \tau = \mu \left( -4y + 4 \right) \]
\[ 0 = \mu \left( -4y + 4 \right) \]
점성계수 \( \mu \)가 0이 아니므로:
\[ -4y + 4 = 0 \]
\[ 4y = 4 \]
\[ y = 1 \]
따라서 전단력이 0이 되는 지점의 높이는 \( y = 1 \)입니다.
정답은 1번, \( 1 \)입니다.
점성유체 (Viscous fluid) :
점성유체는 흐름에 대한 내부 저항을 가진 유체를 말합니다. 이러한 유체는 움직일 때 마찰력이 발생하며, 이로 인해 에너지가 소산됩니다. 점성의 정도는 유체마다 다르며, 점성이 높을수록 유체의 흐름에 대한 저항이 커집니다.
주요 특징:
- 흐름에 대한 내부 저항 존재
- 층류 흐름에서 속도 구배 발생
- 점성으로 인한 에너지 손실
예시: 꿀, 오일, 물 등
전단력 (Shear force) :
전단력은 물체의 한 부분을 다른 부분에 대해 평행하게 미끄러지게 하는 힘입니다. 유체 역학에서 전단력은 유체 층 사이에 작용하는 힘으로, 점성유체의 흐름을 이해하는 데 중요한 개념입니다.
주요 특징:
- 물체나 유체의 표면에 평행하게 작용
- 유체의 변형률과 관련됨
- 점성유체의 흐름에서 중요한 역할
점성유체와 전단력은 밀접한 관련이 있습니다. 점성유체가 흐를 때, 유체 층 사이에 속도 차이가 발생하며, 이로 인해 전단력이 생깁니다. 이 전단력은 유체의 흐름을 방해하고 에너지를 소산시키는 역할을 합니다.
댓글2
-
세상의모든계산기
유속과 전단력을 그래프로 나타내려면,
먼저 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)와 전단력 \( \tau = \mu \left( -4y + 4 \right) \)를 그래프로 표현하면 됩니다.
여기서 전단력은 점성계수 \( \mu \)에 비례합니다.
import numpy as np import matplotlib.pyplot as plt # Define the height range y = np.linspace(0, 4, 400) # Define the velocity function v = -2 * y**2 + 4 * y # Define the shear stress function (assuming mu = 1 for simplicity) mu = 1 tau = mu * (-4 * y + 4) # Plot the velocity profile plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(y, v, label='Velocity (v)') plt.axhline(0, color='gray', linewidth=0.5, linestyle='--') plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1') plt.title('Velocity Profile') plt.xlabel('Height (y)') plt.ylabel('Velocity (v)') plt.legend() plt.grid(True) # Plot the shear stress profile plt.subplot(1, 2, 2) plt.plot(y, tau, label='Shear Stress (τ)', color='orange') plt.axhline(0, color='gray', linewidth=0.5, linestyle='--') plt.axvline(1, color='red', linewidth=0.5, linestyle='--', label='Shear stress = 0 at y=1') plt.title('Shear Stress Profile') plt.xlabel('Height (y)') plt.ylabel('Shear Stress (τ)') plt.legend() plt.grid(True) plt.tight_layout() plt.show()위 코드는 다음과 같이 작동합니다:
1. \( y \)의 범위를 0에서 4까지 정의합니다.
2. 주어진 유속 함수 \( v(y) = -2y^2 + 4y \)를 계산합니다.
3. 전단력 함수 \( \tau = \mu (-4y + 4) \)를 계산합니다. 여기서 \( \mu = 1 \)로 가정합니다.
4. 두 개의 서브플롯을 만들어 유속 프로파일과 전단력 프로파일을 각각 그래프로 그립니다.위의 코드를 실행하면 유속과 전단력의 그래프가 나타납니다. 유속 그래프에서는 포물선 형태의 곡선을 볼 수 있으며, 전단력 그래프에서는 직선의 기울기가 -4인 그래프를 볼 수 있습니다.
이제 이 코드를 실행해 보겠습니다.

위 그래프는 주어진 조건에 따른 유속과 전단력을 나타낸 것입니다.
1. **유속 프로파일** (왼쪽 그래프):
- 유속 함수 \( v(y) = -2y^2 + 4y \)는 포물선 형태를 띠며, \( y = 1 \)에서 최대값을 가집니다.
- \( y = 0 \) 및 \( y = 2 \)에서 유속은 0이 됩니다.2. **전단력 프로파일** (오른쪽 그래프):
- 전단력 함수 \( \tau = \mu (-4y + 4) \)는 기울기가 -4인 직선입니다.
- \( y = 1 \)에서 전단력이 0이 됩니다.이 그래프를 통해 유속이 최대가 되는 지점과 전단력이 0이 되는 지점을 명확하게 확인할 수 있습니다.
-
세상의모든계산기
fx-570 ES 의 solve 로 구할 수 없는지?
fx-570 ES 와 같은 보급형 공학용 계산기에서는 solve 기능 내에서 미분(계수)처리를 할 수 없습니다.
따라서 solve 기능으로 답을 찾을 수는 없습니다.


로 템플릿 불러오고 수식과 x=1 부분 완성.이런 식으로 x=1, x=2, x=3, x=4
모두 대입해 보고 0이 나오는지 확인하는 방법은 있습니다.
미분하는 것보다는 느리겠죠?
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02