• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기  
      • 자유(질문) 게시판  
      • 계산기 뉴스/정보  
      • 수학, 과학, 공학 이야기  
      • 세모계 : 공지 게시판  
        • 구글 맞춤검색  
      • 세상의 모든 계산기  
        • 자유(질문) 게시판  
    • TI  
    • CASIO  
    • HP  
    • SHARP  
    • 일반(쌀집) 계산기  
    • 기타계산기  
    • 세모계
    • by ORANGEDAY
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학
    • 미분방정식 - 1st order 선형 상수 계수 미분 방정식

    • Profile
      • 세상의모든계산기
        *.105.205.197
      • 2024.07.16 - 23:35 2024.07.16 - 19:26  169  1

    함수 \( y' = k \cdot y \)를 구하는 방법을 설명하겠습니다.

    이 미분 방정식은 첫 번째 차수의 선형 상수 계수 미분 방정식입니다. 이를 해결하기 위해 우리는 변수 분리법을 사용할 수 있습니다.

     

    1. 미분 방정식을 다시 씁니다:

       \[
       \frac{dy}{dt} = k \cdot y
       \]

     

    2. 변수 분리:

       양변을 \( y \)와 관련된 항과 \( t \)와 관련된 항으로 나눕니다.

       \[
       \frac{dy}{y} = k \cdot dt
       \]

     

    3. 적분:

       양변을 적분합니다.

       \[
       \int \frac{1}{y} \, dy = \int k \, dt
       \]

     

    4. 적분 결과:

       왼쪽은 자연 로그가 되고, 오른쪽은 상수 \( k \)와 \( t \)의 적분입니다.

       \[
       \ln |y| = kt + C
       \]

       여기서 \( C \)는 적분 상수입니다.

     

    5. 양변에 지수 함수 적용:

       \( y \)를 구하기 위해 양변에 지수 함수를 적용합니다.

       \[
       e^{\ln |y|} = e^{kt + C}
       \]

       따라서,

       \[
       |y| = e^{kt + C}
       \]

     

    6. 상수 \( C \) 처리:

       \( e^{kt + C} = e^{kt} \cdot e^C \)이므로, \( e^C \)를 새로운 상수 \( A \)로 둡니다. 즉, \( A = e^C \)입니다.

       \[
       |y| = A e^{kt}
       \]

       여기서 \( A \)는 임의의 상수입니다. 절대값을 없애기 위해, \( y \)가 양수이거나 음수일 수 있으므로,

       \[
       y = A e^{kt}
       \]

       여기서 \( A \)는 양수 또는 음수 모두 가능합니다.

     


    결과적으로, 주어진 미분 방정식 \( y' = k \cdot y \)의 해는:

    \[
    y = A e^{kt}
    \]

    여기서 \( A \)는 초기 조건에 따라 결정되는 상수입니다.

    0
    0
    Attached file
    image.png 105.2KB 13
    이 게시물을..
    • 세상의모든계산기 세상의모든계산기 Lv. 25

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

     댓글 1

      • Profile
      • 세상의모든계산기 (*.105.205.197) 2024.07.16 19:39 #comment_44451

        반감기가 있는 물질에서 미분 방정식 \( y' = k \cdot y \)가 성립하는 이유


        반감기가 있는 물질에서 미분 방정식 \( y' = k \cdot y \)가 성립하는 이유는, 이러한 물질의 붕괴가 시간에 따라 지수 함수적으로 이루어지기 때문입니다. 이를 더 자세히 설명하면 다음과 같습니다.

         

        1. 반감기와 지수 함수적 붕괴

        반감기(T)는 어떤 물질의 양이 절반으로 줄어드는 데 걸리는 시간을 의미합니다. 물질이 시간이 지남에 따라 지수 함수적으로 감소한다는 것은, 물질의 양이 일정한 비율로 감소한다는 것을 의미합니다. 즉, 시간이 일정 기간 \( T \)마다 물질의 양이 절반으로 줄어드는 특성을 보입니다.

         

        2. 지수 함수적 감소 모델

        이러한 물질의 양 \( y \)가 시간 \( t \)에 따라 감소하는 것을 모델링하기 위해서는 지수 함수적 감소를 이용합니다. 일반적으로 물질의 양 \( y \)는 다음과 같이 표현할 수 있습니다:

        \[
        y(t) = y_0 e^{kt}
        \]

        여기서:
        - \( y_0 \)는 초기 물질의 양 (t=0일 때의 양)
        - \( k \)는 붕괴 상수로, 이 상수는 음수입니다 (감소하므로).

         

        3. 미분 방정식 유도

        지수 함수적 모델을 사용하면, 양 \( y \)의 변화율(즉, 시간에 따른 감소율)은 현재 양 \( y \)에 비례합니다. 이를 수학적으로 표현하면 다음과 같은 미분 방정식을 얻을 수 있습니다:

        \[
        y' = \frac{dy}{dt} = k \cdot y
        \]

        여기서 \( y' \)는 물질의 시간에 따른 변화율, \( k \)는 비례 상수입니다.

         

        4. 반감기와 붕괴 상수 \( k \)의 관계

        반감기 \( T \)와 붕괴 상수 \( k \)는 다음과 같은 관계를 가집니다:

        \[
        y(T) = \frac{y_0}{2} = y_0 e^{kT}
        \]

        이 식에서 \( y(T) \)가 초기 양의 절반임을 이용하여 다음과 같이 풀면:

        \[
        \frac{1}{2} = e^{kT}
        \]

        양변에 자연 로그를 취하면:

        \[
        \ln \left( \frac{1}{2} \right) = kT
        \]

        즉,

        \[
        k = \frac{\ln \left( \frac{1}{2} \right)}{T} = -\frac{\ln 2}{T}
        \]

         

        따라서, 붕괴 상수 \( k \)는 반감기 \( T \)에 따라 음수로 결정됩니다.

         

        * 결론 *

        반감기가 있는 물질은 시간이 지남에 따라 지수 함수적으로 감소하므로, 물질의 양 \( y \)와 그 변화율 \( y' \) 간의 관계를 나타내는 미분 방정식은 \( y' = k \cdot y \)의 형태가 됩니다. 이 방정식은 물질의 감소율이 현재 양에 비례함을 의미하며, 반감기 특성을 잘 설명해줍니다.

        0
        댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • 목록 목록
    • 목록
    1
    by OrangeDay
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • allcalc.org
    • 세모계 all rights reserved.